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Fig. 1. We performed three experiments to measure color difference perceptions for visualizations, focusing on diagonally symmetric
marks from scatterplots, elongated marks from bar charts, and asymmetric elongated marks from line graphs. The tested size ranges
are shown above for two greens at ∆E = 10 (figures have been scaled to 30% of the tested size). We confirm prior findings that
perceived color difference varies inversely with size and find that elongated marks provide significantly greater discriminability for
encoding designers. Our results provide probabilistic models of color difference for visualization.

Abstract—Color is frequently used to encode values in visualizations. For color encodings to be effective, the mapping between colors
and values must preserve important differences in the data. However, most guidelines for effective color choice in visualization are
based on either color perceptions measured using large, uniform fields in optimal viewing environments or on qualitative intuitions.
These limitations may cause data misinterpretation in visualizations, which frequently use small, elongated marks. Our goal is to
develop quantitative metrics to help people use color more effectively in visualizations. We present a series of crowdsourced studies
measuring color difference perceptions for three common mark types: points, bars, and lines. Our results indicate that peoples’ abilities
to perceive color differences varies significantly across mark types. Probabilistic models constructed from the resulting data can provide
objective guidance for designers, allowing them to anticipate viewer perceptions in order to inform effective encoding design.

Index Terms—Color Perception, Graphical Perception, Color Models, Crowdsourcing

1 INTRODUCTION

Visualizations reveal patterns in data by mapping values to different
visual channels, such as position, size, or color. In order for visualiza-
tions to be effective, perceived differences in encoded values should
correspond to differences in the underlying data. As a result, visualiza-
tion designers need to map data ranges to sufficiently wide ranges in the
target visual channel such that important differences in the data are pre-
served. However, most metrics for predicting perceived differences in
visual channels come from controlled models of human vision, which
are generally constructed using large and visually isolated stimuli under
optimal conditions. Visualizations, in contrast, often consist of large
numbers of small marks viewed using a wide range of devices and envi-
ronments. The assumptions made in controlled models of human vision
may limit the utility of applying perceptual models to visualization
design in practice.

These limitations are especially detrimental for color encodings.
Environmental factors, display settings, and properties of visualization
design can all inhibit people’s abilities to distinguish encoded colors in
visualizations [41, 50, 51]. Conventional color difference metrics, such
as CIELAB, do not account for these factors, instead assuming large
uniform color patches viewed in isolation under perfect conditions (2◦
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or 10◦ of visual angle, approximately 50 pixels and 250 pixels wide
for a standard web observer). However, many visualization systems
rely on CIELAB and similar metrics to construct encodings, leading
them to systematically underestimate the perceived differences between
colors [41, 51]. This underestimation can lead to ineffective encoding
choices by, for example, mapping continuous data to too narrow a
range or encoding ranked or categorical data with colors that are too
close together. Our goal is to provide a preliminary understanding of
how we might adapt existing color difference models to account for
visualization design factors.

We present a series of crowdsourced experiments used to model
color difference perceptions for visualizations parameterized according
to the designer’s desired level of discriminability and known proper-
ties of a visualization. These models provide the first steps towards
visualization-specific models of color difference, focusing on three
different mark types: points, bars, and lines. Our models are grounded
in comparisons of color mark pairs in a field of grey distractor marks in
conventional visualizations (scatterplots, bar charts, and line graphs).
Our experiments leverage an empirically-validated method from color
science for constructing probabilistic models of difference perceptions
to generate data-driven metrics for designers to consider when cre-
ating, evaluating, and refining visualizations. Our results show that
conventional color difference metrics significantly underestimate the
necessary differences between encoded values and that necessary differ-
ences between marks vary with the kind of visualization being used. For
example, color encodings on elongated marks, such as those used in bar
charts and line graphs, are significantly more discriminable than equally
thick point marks, such as scatterplot points. The resulting models can
be used to design color encodings with probabilistic bounds on their



predicted effectiveness based on known parameters of a visualization
and to evaluate and refine existing codings.

Contributions: The primary contributions of this paper are empirical
measures and models that capture how color differences vary across
different mark types commonly used in visualizations (points, bars,
and lines). These measures are made actionable through small mod-
ifications to CIELAB ∆E, a common color distance metric used in
visualizations. Our results provide a quantitative analysis of color dif-
ference perceptions grounded in common visualizations, finding that
perceived color difference varies inversely with size and that colors are
more discriminable on elongated marks (bars and lines) than on points.
They also formalize the relationship between elongation and perceived
color difference. Integrating contextual information that influences en-
coding perceptions into visualization design tools through our models
may significantly increase visualization effectiveness.

2 BACKGROUND

Color provides three channels commonly used to visualize data: light-
ness, saturation/chroma, and hue [5]. While a number of tools and
guidelines exist to guide effective color encodings (see Zhou & Hansen
[55], Kovesi [23], and Silva et al. [47] for surveys), these metrics rely
predominantly on heuristics, designer intuitions, and results from color
science. As mentioned above, color science models are intended to
capture parameters of human color vision [16], and do so by modeling
vision agnostic of many of the complexities that may inhibit people’s
abilities to discriminate between colors in practice. Our work draws
on previous studies of color in visualization and findings from color
science to form the basis for our analyses.

2.1 Color in Visualization

Several studies in visualization have explored different aspects of color
use. For example, studies have evaluated the impact of individual
factors in colormap design, such as binning [40], color naming and
semantics [20, 27], categorical similarity [15], cognitive bias [48], and
salience [26]. Other studies measure the effectiveness of color encod-
ings for different kinds of tasks. Cleveland & McGill [13] show that
different color channels communicate individual values less precisely
than position or size; MacEachren et al. [30] compare the effectiveness
of color and other channels for investigating uncertainty. More recent
work in graphical perception has identified potential utility of color for
statistical judgments across large collections of datapoints [2, 3, 14]. In
all of these studies, leveraging color effectively requires selecting color
maps that span an appropriate encoding range to highlight important
differences in the distribution.

In addition to formal studies on color use and application, a number
of systems exist for creating encodings based on perceptual and cogni-
tive heuristics (see Zhou & Hanseon [55] for a survey). Several of these
systems use anticipated analysis tasks to guide color encoding design.
For example, PRAVDAColor [4] introduces design heuristics that guide
color encoding based on perception, task, and data type. Tominski et
al. [52] design color encodings that explicitly enable comparison tasks.
ColorCAT [34] expanded on this work to also consider localization and
identification tasks as well as colorblindness.

Color map tools have also leveraged algorithmic processes over
perceptual color spaces to generate encodings, such as harmonies [1],
clustering [21], and statistical sampling [19]. ColorBrewer [18], among
the most common color encoding tools currently in use, arose from
a series of studies on the Hunt Model for mitigating color contrast
in choropleth maps [8, 9]. The ramps emerging from these studies
were then hand-tuned for aesthetics and performance. Subsequent stud-
ies provide algorithmic approximations of the resulting encodings by
interpolating in CIELUV [54]. Colorgorical [17] optimizes across per-
ceptual distance, nameability, and aesthetic considerations to generate
categorical palettes.

While these tools provide visualization designers with access to
encodings that abstractly support heuristic and perceptual constraints
for effective color encodings, they are designed to work well in the
abstract, based on color spaces modeled over small numbers of large,

uniform marks viewed in isolation. Many visualization systems lever-
age small, non-uniform marks, such as scatterplot points or lines in
a line graph, that may reduce the effectiveness of these encodings in
practice (c.f., Fig. 1). We build on existing color spaces commonly
used in visualizations to generate data-driven metrics for understanding
how the effectiveness of these designs might change for different marks
and visualizations.

2.2 Color Difference Metrics

Color difference metrics normalize color space such that the geometric
and perceptual differences between colors are aligned (see Robertson
[43] for a survey). For example, in CIELAB, one unit in color space
approximately corresponds to one just-noticeable difference (JND).
While these metrics vary significantly in how they define the set of
available colors, they all characterize the psychophysical capabilities
of human color perception. As a result, they rely on a simplified model
of the world that allows these models to isolate the capabilities of the
human visual system from the complexities introduced by real-world
viewing [16].

This “simple world” assumption, while necessary for understanding
the visual system, means that these models do not account for the
complexities of real world viewing. For example, properties of the
viewing environment, such as increased direct or ambient lighting
[7, 39, 42], background and surrounding colors [38, 49], the size of a
mark [12, 50], and display device [24, 45] may alter color perception
in practice. This complicates the use of color difference metrics in
visualization as these metrics are likely to underestimate the necessary
differences between mark colors.

Our studies use CIELAB [25], a color space comprised of three
primary axes: L∗ (lightness), a∗ (the amount of red or green), and b∗
(the amount of blue or yellow). While metrics such as CIE ∆E94 [32],
CIEDE2000 [29], and CIECAM02 [36] provide more precise calcu-
lations of color difference, the computational simplicity of CIELAB
∆E, where perceived difference is measured using Euclidean distance,
makes it a popular choice for visualization tools (e.g. [11, 22, 28, 53]).
Some encodings account for imperfections in CIELAB by hand (e.g.
Samsel’s green-blue encodings [44]), but this process does not scale
well nor does it provide quantitative guarantees of effectiveness. In-
stead, this work focuses on providing actionable guidance for reasoning
about perceptual effectiveness by generating quantitative metrics from
existing models of color perception to aid in creating and evaluating
encodings for visualizations.

2.3 Color Difference in Practice

Recent efforts provide methods for creating more robust models of color
perception using crowdsourcing. For example, Szafir et al. [51] use a
binary forced choice comparison between color patches to construct
probabilistic models of color differences based on CIELAB. Stone
et al. [50] extend that model to consider uniform marks of different
sizes; however, these models consider only isolated colored squares,
devoid of the visual complexity and shape variety found in visualiza-
tions. Reinecke et al. [41] ask participants to analyze gapped circles
to compute discriminable differences and provide a thorough analysis
with respect to different viewing factors. These three models show that
conventional color difference models underestimate color perceptions
in practice by roughly a factor of five. However, all of these models
still fail to consider many of the complexities involved in visualizations,
such as visual complexity, potential contrast effects [35], and varying
mark shapes [12]. This work instead aims to create difference models
specifically tailored to visualizations. We focus on properties known at
design time, such as minimum bar or point widths. The results allow
us to start to think about how design tools might account for complex
perceptual phenomena in advance for visualization.

3 VISUALIZATION FACTORS IN COLOR PERCEPTION

Visualizations violate the assumptions of conventional color science
models in three ways:



1. The Simple World Assumption: Color science models assume
perfect viewing conditions, whereas visualizations can be viewed
anywhere (see Szafir et al. [51] for a discussion).

2. The Isolation Assumption: Color science models assume view-
ers are comparing one or two isolated color patches, whereas
visualizations map colors in a visually complex environment.

3. The Geometric Assumption: Color science models assume all
color patches are the same size and shape (generally either 2◦
(approximately 50 pixels wide) or 10◦ (approximately 250 pixels)
wide), whereas visualizations map colors to marks of varying size
and shape.

While prior models have addressed the Simple World Assumption
[41,50,51], the other two assumptions are far less understood. The goal
of this paper is to provide preliminary steps towards color difference
models that account for all three violations simultaneously. In doing
so, we can provide visualization designers with concrete probabilistic
guidance that enables them to make more informed decisions about
their color encodings grounded in what viewers will likely perceive.

In this work, we address the Simple World Assumption through
crowdsourcing, using the methodology established in Szafir et al. [51]—
a binary forced-choice comparison of two colored patches. We use this
methodology as it has a natural analogue to comparing two datapoints
in a visualization (asking people to identify whether two values are
the same or different) and has produced comparable results to more
complex methods (e.g., gapped circles [41]). We address the Isolation
Assumption by mapping our test colors to marks in visualizations with
a series of mid-gray distractor marks to add visual complexity more
reflective of traditional visualizations (see §4.1 for details). Our studies
do not offer the full visual complexity of traditional visualizations,
which generally have large numbers of differently colored marks. How-
ever, the choice to use mid-gray distractor marks mitigates potential
confounds from color contrast and also simplifies the comparison task
by allowing participants to focus on the “colorful marks.”

The Geometric Assumption, however, is more complicated to ad-
dress. “Size” can have many meanings in visualization. Stone et al. [50]
demonstrated that the diameter of an object can significantly change
how readily we can discriminate between their colors, but tested only
uniform squares. To date, the factors of size that directly effect color
perceptions have yet to be enumerated. For example, using either length
or area to encode data directly influence the size of a mark. Preliminary
evidence shows that how we manipulate the size of a mark may have
different ramifications on color perceptions [12], but these measures
come from studies of response time in a visual search task. Instead,
we consider the size factors in the context of marks applied to a visu-
alization and the resulting effects of mark size on viewers’ abilities to
compare these marks.

To capture the possible variations from mark size, we first enumer-
ated the different ways that mark size varies with values in a visualiza-
tion (e.g., thickness, diameter, length, arc length, linearity, and area).
Based on these enumerations, we identified four primary categories of
marks that might affect color perceptions.

• Diagonally Symmetric Marks: Marks that have an equal height
and width (e.g., points in a scatterplot, cells in a heatmap, bubbles
in a cartogram).

• Elongated Marks: Marks that encode data using length in one
dimension, but are fixed along the all others (e.g., bars in a bar
chart, arcs in a donut chart).

• Asymmetric Marks: Marks whose length changes based on the
position of its internal points but have a fixed thickness (e.g., lines
in a line graph, arcs in a connected scatterplot, lines in a parallel
coordinates plot).

• Area Marks: Marks that communicate information using their
total area rather than any specific dimension of a mark (e.g., areas
in a streamgraph, wedges in a pie, regions in a choropleth map).

These categories provide a basic scaffold for considering how we
might build and reason about color and size in visualization. Specifi-
cally, we anticipate that color perceptions will vary individually across
each class of mark size. To test these, we chose a canonical chart type
for each category (scatterplots for diagonally symmetric marks, bar
charts for elongated marks, and line graphs for asymmetric marks) ex-
cept area marks to serve as our experimental stimuli. Area marks tend
to vary quite irregularly (e.g., there is no fixed dimension). As a result,
it is difficult to generate area marks that are both ecologically valid and
cover the range of potential geometries. Additionally, since these marks
often have a minimum area of 0 pixels, it is difficult to put probabilistic
bounds on their visibility. In this study, we consider the relationship be-
tween different size factors associated with area marks (e.g., length and
thickness). We anticipate our results will provide preliminary metrics
that can be used for area marks, especially for visualizations such as
choropleth maps and heatmaps, where the relative sizes of marks can
be approximated in advance; however, a formal model for area marks
is important future work.

4 GENERAL METHODS

We compared color difference perceptions for points, bars, and lines
using a series of mixed-factor experiments conducted on Amazon’s
Mechanical Turk. Each experiment focused on one mark type (points,
lines, or bars) encoded as part of a visualization (scatterplot, line graph,
or bar chart). All three experiments shared the same general struc-
ture, with variations to these experiments discussed in their respective
Methods sections. Across all three experiments, the primary dependent
measure was discriminability rate (how often color differences were
perceived) and independent variables were mark size, color difference,
and tested axis (L∗, a∗, and b∗).

4.1 Stimuli

We measured color difference perception using static visualizations
rendered using D3 [6] (c.f., Fig. 4.1). Bar charts and scatterplots were
rendered on a 375× 250 pixel white background using 1 pixel mid-
gray axes. Lines were rendered as 300× 300 pixel visualizations to
accommodate vertical spacing. Each stimulus contained two colored
test marks and a series of randomly-placed distractor marks. Test
marks were separated by 5◦ of visual angle (125 pixels) edge-to-edge.
As the spatial distance between marks can influence color difference
perceptions [10], we elected to preserve a constant distance between test
marks. While visualization marks are generally variably spaced, using a
constant mark distance mitigates potential confounds in our models due
to mark spacing to provide an amortized prediction of color difference.
We selected 5◦ (125 pixels) of separation as it provided a comfortable
distance in piloting, approximately corresponds to the edges of foveal
vision [33], and fits within most visualizations. Distractor marks were
included to increase the visual complexity of the stimuli for increased
ecological validity in our color comparison task and to address the
Isolation Assumption. Test and distractor marks were mapped to a
constant size, with size ranges for each experiment discussed in their
respective Methods sections.

We sampled mark sizes along uniform steps in visual angle, allowing
us to compare our results with those from color science. However,
converting from visual angle to pixels requires knowledge of both how
far the viewer is from the display and the display resolution, neither of
which are generally available to visualization designers. As a result, all
size conversions assumed a standard viewing distance of 30 inches, a
D65 whitepoint,1 and the HTML default pixel resolution of 96 dpi. 2 In
most browsers, this will be remapped automatically to compensate for
the actual display resolution. Tested sizes were first selected based on
their appropriateness for the tested visualization type and then refined
in piloting.

We mapped test marks to two different colors: one target color
and a second color adjusted from the target color by a fixed color

1Converted using D3’s CIELAB conversion modified to remove rounding
2http://www.w3.org/TR/css3-values/#absolute-lengths



1 JND Target2 JNDs

Fig. 2. We tested color difference perceptions at six fixed color differences
sampled according to the model constructed by Stone et al. [50]. This
figure shows the 0.5ND(50,Size), 1ND(50,Size) (i.e., 1 JND), 1.5ND(50,Size),
and 2ND(50,Size) (i.e., 2 JND) levels for L∗ and 2◦ marks.

difference step. Target colors were computed by first uniformly sam-
pling the CIELAB gamut from L∗ = 20 to L∗ = 80 in 12.5∆L∗ and
12∆a∗ and ∆b∗ steps. We then discarded all grays to avoid confu-
sion with the distractor marks as well as all colors that would fall
outside of the CIELAB gamut when adjusted by the largest tested
amount. This resulted in 79 test colors ranging from L∗ = [30,65],
a∗ = [−36,48], and b∗ = [−48,48]. We computed adjusted colors by
sampling ± 6 steps along each axis from the tested color. Step sizes
were computed by interpolating the ND(50,size) model from Stone et
al. [50], a size-sensitive crowdsourced model where 1ND(50,size) corre-
sponds to the color difference in CIELAB we expect will be detected
50% of the time. Stimuli used steps of 0.5ND(50,Size), 0.75ND(50,Size),
1ND(50,Size), 1.25ND(50,Size), 1.5ND(50,Size), or 2ND(50,Size) (c.f., Fig.
2). We mapped all distractor marks mid-gray (L∗ = 50) to minimize
any potential conflicts from simultaneous contrast.

4.2 Procedure
All three experiments used a binary-forced choice design, asking partic-
ipants to report whether two colored marks appeared to be the “same”
color or “different” colors. Participants completed the study within
their web browser with each stimulus rendered in real-time.

Participants were first screened for color vision deficiencies using
four Ishihara plates. Because consumer monitors are likely uncalibrated,
the Ishihara plates provide an approximate screening. We supplemented
this screening by asking participants to self-report any color vision
deficiencies. They were then shown three example stimuli to clarify the
definition of “same” and “different” colors: one stimuli had identically
colored marks, a second had marks of differing hues, and a third had
marks of differing lightnesses. Participants had to correctly complete
all three tutorial questions before beginning the study.

Participants then completed a series of 79 comparisons (one for
each test color), reporting whether test marks appeared to be the same
color or different colors using keyboard inputs (’f’ for same, and ’j’ for
different, consistent with Stone et al. [50]). The trial window persis-
tently showed input keys above the stimuli on the corresponding sides
of the display (’f’ on the left, ’j’ on the right). Each trial randomly
mapped the 79 test colors to different conditions, and conditions were
presented in a random order to mitigate learning and fatigue effects. To
mitigate contrast effects between subsequent trials, participants saw a
0.5s gray adaptation screen between each trial. We concluded by col-
lecting demographic information. We included four same-color stimuli
to mitigate bias and three large-difference stimuli (nameably different
colors greater than 20∆E at middle sizes) an engagement check to en-
sure honest participation. Participants incorrectly responding to two or
more large-difference stimuli or averaging less than 0.5s (grey screen
duration) per response time were excluded from our analysis. Across
all experiments, color difference was a within-participants factor, while
tested axis (L∗,a∗, or b∗ ) was a between-participants factor.

4.3 Analysis & Modeling
The primary dependent measure in these experiments is the discrim-
inability rate—the proportion of trials where a difference is correctly
recognized (i.e., reported di f f erences

total trials )—for each combination of inde-
pendent variables. We first analyzed discriminability rates from each
experiment using an ANCOVA to identify factors influencing differ-
ence perceptions. Because prior studies found small effects of sample
color [50] and crowdsourcing may introduce unexpected individual dif-
ferences, sample color and between-participant variation were treated

as random covariates. These covariates help mitigate incidental effects
from crowdsourcing and small biases introduced by the tested color
sample [37]. We perform post-hoc comparisons using Tukey’s Honest
Significant Difference Test (HSD).

We then constructed a model of color difference perceptions pa-
rameterized by mark size using the approaches described in Szafir et
al. [51] and Stone et al. [50], which renormalize CIELAB ∆E based
on discriminability rates collected across each axis to account for axis-
level variation. This model provides a validated metric for generating
controlled models of perceived color difference using a relatively small
number of samples and is designed for use on Mechanical Turk. The
model computes ∆Ep,s as follows:
1. Preprocessing: We first compute the discriminability rate for each
combination of size and color difference, with our sampling rate pre-
dicting a 7% margin of error based on a 50% discriminability rate. We
then verify all rates fall below the asymptote (or “knee” [12]) in the
resulting probability curve, which represents the threshold at which dif-
ferences are immediately perceptible. All data collected in our studies
fell within this range.
2. Size × Axis Models: We model the resulting discriminability rates
for a given mark size and axis in CIELAB using linear regression,
treating discriminability rate as our dependent variable, distance (∆E)
between colors as our independent variable, and between-participant
variation and starting color as random effects. We constrain the re-
gression to a zero-intercept to account for small variations due to our
sampling methodology. The resulting model has the form:

p = mx ∗∆x (1)

where p is the proportion of detected color differences (p = 50% is a
typical JND), m is the regression line slope, and x is the current CIELAB
axis. We can alternatively compute the color difference necessary to
achieve a p% noticeable difference (ND(p)) in ∆E as:

NDx(p) =
p

mx
(2)

3. Size-Independent Models: We model size variation as a function
of the set of slopes mx as an inverse function of size s. Combined with
Eqn 2, we model a p% noticeable difference as:

NDx(p,s) =
p

cx +
kx
s

(3)

where c and k are constants derived from a linear fit of slopes to inverse
size. The resulting model corresponds to a quantitative bound on the
minimal discriminable color difference in CIELAB ∆E for each mark
type based on the geometric properties of that mark. We report our
models as both a function of p and as 50% JNDs (ND(50%,s)).
4. Normalized Color Difference (∆Ep,s): We can compute NDx(p,s)
for each axis of CIELAB and divide each term in the resulting Euclidean
distance model to normalize CIELAB according to the anticipated
visualization design. We express this normalized ∆Ep,s as:

∆Ep,s =

√
(

∆L
NDL(p,s)

)2 +(
∆a

NDa(p,s)
)2 +(

∆b
NDb(p,s)

)2 (4)

which predicts that a color difference of ∆Ep,s = 1.0 will be detectable
by p% of viewers for a given mark size. We use the resulting model to
compute size-scaled differences across the full color space, including
inter-axis variation.

While this modeling methodology appears fairly simple, it has been
directly validated in the color science community where it predicted
cross-axis 50% JNDs to within 1% for crowdsourced users [51], has
produced consistent in subsequent studies [50], and generated com-
parable JNDs to alternative methodologies [41]. Data tables used in
our calculations and our experimental infrastructure can be found at
http://cmci.colorado.edu/visualab/VisColors.

http://cmci.colorado.edu/visualab/VisColors


Table 1. Regression results for points, where p = mx ∗∆X .

Axis Size (s) Size in Px Slope R2 ND(50%) in ∆E
L 0.25◦ 6 px 0.059 0.948 8.37
L 0.5◦ 12 px 0.074 0.97 6.74
L 0.75◦ 18px 0.087 0.981 5.75
L 1◦ 25px 0.087 0.965 5.75
L 1.5◦ 37 px 0.082 0.996 6.08
L 2◦ 50 px 0.091 0.974 5.47
a 0.25◦ 6 px 0.031 0.984 16.11
a 0.5◦ 12 px 0.05 0.988 9.98
a 0.75◦ 18px 0.059 0.987 8.52
a 1◦ 25px 0.064 0.992 7.81
a 1.5◦ 37 px 0.073 0.985 6.87
a 2◦ 50 px 0.073 0.994 6.84
b 0.25◦ 6 px 0.026 0.978 19.46
b 0.5◦ 12 px 0.037 0.988 13.34
b 0.75◦ 18px 0.044 0.994 11.35
b 1◦ 25px 0.05 0.979 10.03
b 1.5◦ 37 px 0.056 0.979 8.97
b 2◦ 50 px 0.063 0.99 7.99

4.4 Participant Recruitment
One of the primary goals of this work is to understand color perceptions
in the context of visualization viewing. As a result, we want to bal-
ance ecological validity with controlled quantitative modeling. While
viewing environment can significantly impact color perceptions, visu-
alizations are generally viewed in imperfect environments in practice.
However, recent work [41,51] has shown that sampling across this vari-
ation can generate accurate models of color perceptions in practice. To
construct color difference models that are robust to anticipated viewing
variations, we recruited participants for our studies using Amazon’s
Mechanical Turk.

Across all three studies, we recruited 461 total participants from the
U.S. Mechanical Turk population. All participants has a 95% or greater
approval rating. 4 participants were excluded from our analysis due to
self-reported color vision deficiencies, 18 due to poor performance on
the large-difference stimuli (incorrectly identifying more than 2 of the
4 nameably different colors), and 7 for mean response times less than
0.5 seconds.

5 EXPERIMENT ONE: SCATTERPLOTS

Scatterplots generally use small, diagonally symmetric marks to encode
data. These marks most closely align with the uniform fields used to
construct conventional color science models. As a result, we hypothe-
sized that existing models of color perceptions, especially the color-size
model presented in Stone et al. [50], would provide a reliable model of
color difference perceptions for scatterplots.

5.1 Methods
To model color difference for diagonally symmetric points, we gener-
ated a series of scatterplots with circular marks. Mark diameters ranged
from 0.25◦ (6 pixels) to 2.0◦ (50 pixels). Test points were mapped
to a random y-value and separated by 5◦ (125 pixels) along the x-

axis. We computed the distractor positions by placing
√

visualizationarea
mark area

points at positions randomly sampled from a normal distribution
(µ = 0.5,σ = 1.0) and removing points intersecting any other point
in the plot. Table 5 summarizes the tested sizes, and Figure 1 shows
examples of the smallest and largest stimuli.

We ran a 6 (diameters, within) × 6 (color differences, within) ×
3 (color axis, between) mixed-factors experiment to collect data for
our model. Each participant saw each diameter × color difference
combination twice plus seven engagement checks. Each stimulus used
a random test color and was presented in a random order.

5.2 Results
We collected data from 81 participants. Data from seven participants
was excluded for poor performance on large-difference stimuli, and
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Fig. 3. We can use our data to model 50% JNDs (ND(50%,s)) for scatter-
plots. JNDs shrink significantly as point marks grow larger. Even near the
asymptote, JNDs for scatterplot points on the web are significantly larger
than those predicted in laboratory studies (e.g., Mahy et al. [31]) and
non-visualization studies (e.g., Stone et al. [50]). Error bars represent
expected margin of error from our sample size.

two participants were excluded for response time, resulting in 72 partic-
ipants (30 female, 41 male, 1 did not report, µage = 34.3±10.5; 5,688
total samples, 24 participants per axis).

5.2.1 Analysis of Factors
We analyzed the frequency of reported differences across experimental
(axis, diameter, and question order) and demographics (gender, display
type, and age) factors using a six-level ANCOVA with starting color
treated as a random covariate. We found a significant effect of axis on
discriminability (F(2,61) = 4.7, p < .02), with participants identifying
differences significantly more for L∗ stimuli (µL = 74.9%) than a∗ or
b∗(µa = 61.7%; µb = 60.2%), consistent with prior work [43, 51]. We
found no transfer (e.g., learning or fatigue), gender, or display effects.
We did find a marginal effect of age (F(1,43) = 5.9, p < .06), but no
systematic bias (R2 = .003).

5.2.2 Modeling
We first computed the discriminability rates for each of the 72 combi-
nations of axis × mark diameter × ∆E. We modeled the collected data
using the procedure discussed in §4.3. We first fit a linear regression
to the discriminability rates and forced the regression through 0 to
mitigate small fluctuations introduced by our data-driven approach. All
models fit with R2 > 0.94 (Table 5). We then modeled these slopes as
an inverse function of mark diameter. The resulting models were:

NDL(p,s) =
p

0.0937− 0.0085
diameter

(5)

NDa(p,s) =
p

0.0775− 0.0121
diameter

(6)

NDb(p,s) =
p

0.0611− 0.0096
diameter

(7)

with L∗(F(1,4) = 35.56, p < .004, R2 = .90), a∗ (F(1,4) =
132.47, p < .0003, R2 = .97), and b∗(F(1,4) = 35.01, p < .005, R2 =
.90) models all providing statistically significant fits to the data. De-
signers can select their desired minimum sizes and JND levels (p) to
compute NDp,s for each axis. These NDp,s values plug into Eqn. 4 to
renormalize CIELAB for scatterplot points, considering distance along
any combination of axes. Figure 3 plots the 50% JNDs (ND(50%,s))



models generated from our data against those from the individual re-
gressions computed for each combination of size and axis.

Our results confirms findings from prior studies: marks become less
discriminable as their size decreases and real devices have significantly
larger JND thresholds than those from traditional color science metrics.
We replicated previous results that show perceptible color differences
for points vary inversely with point diameter. However, we also find
that our results predict larger JNDs for scatterplots than the isolated
marks modeled in Stone et al. [50] (Fig. 3). For example, a 0.5◦ mark in
our scatterplot stimuli has an a∗ axis JND of 10.47∆E, whereas isolated
mark JNDs would require 8.42∆E. While some of this variation may
be explained by margin of error due to sampling, we see this bias
systematically across all three axes. We anticipate that the increased
JNDs are likely due to the increased visual complexity associated with
visualizations—viewers have additional visual information that may
complicate data interpretation—suggesting effects due to the Isolation
Assumption. Future testing is needed to understand how this complexity
might influence these judgments.

6 EXPERIMENT TWO: BAR CHARTS

Elongating marks decreases the time taken to identify marks of dif-
ferent colors [12], suggesting that elongated marks are easier to dif-
ferentiate. As a result, we hypothesized that our point-based model
would overestimate perceived color differences for bars and other elon-
gated marks, causing designers to be overly conservative in their color
choices and superficially reducing the range of available encoding
colors. We can model difference perceptions for elongated marks to
provide benchmarks for evaluating color encodings for elongated marks
in presentation-based visualizations where data is known at design time.
We also explored whether designing for known mark thickness (the
length of the fixed edge, horizontal width in our study) may provide
sufficient discriminability thresholds for designers when data (and,
consequently, bar length) is unknown.

6.1 Methods
Measuring color difference perception for bars required considering not
only mark thickness, but also mark length. We sampled bar thickness
from 0.25◦ (6 pixels) to 2◦ (50 pixels), and bar lengths from 0.125◦
(3 pixels) to 6◦ (150 pixels). In piloting, the increased number of
conditions led to significant fatigue effects. To mitigate these effects,
we treated thickness and length as mixed-participants factors, with each
participant seeing three thicknesses and four lengths.

We used vertical bar charts with test marks separated on the x-axis by
5◦ (125 pixels) and distractors uniformly spaced between the test marks
as well as between each test mark and the bounds of the visualization.
Distractor length were randomized in the range 0.125◦ (3px) to 6.0◦
(150px). Fig. 1 shows examples of the resulting plots.

We ran a 6 (thicknesses, blocked between) × 8 (lengths, blocked
between) × 6 (color differences, within) × 3 (color axis, between)
mixed-factors experiment to collect data for our model. Lengths and
thicknesses were blocked between participants, with each participant
seeing thicknesses of either 0.25◦, 0.75◦, and 1.5◦ or 0.5◦, 1.0◦, and
2.0◦ and lengths of either 0.125◦, 0.5◦, 1.0◦, and 3.0◦, or 0.25◦, 0.75◦,
1.5◦, and 6.0◦. Each participant saw each combination of three thick-
nesses and four lengths once for each color difference plus the seven
engagement check stimuli, with each stimulus mapped to a random test
color and presented in a random order.

6.2 Results
We recruited 301 participants for this study. We excluded data from
four participants due to self-reported CVD, six for poor performance
on the large-difference stimuli and three for response time, resulting in
288 participants (141 female, 146 male, 1 DNR, µage = 34.9±10.2;
22,752 samples, 24 participants per axis × thickness × length).

6.2.1 Analysis of Factors
We analyzed reported differences across experimental (axis, thickness,
length, and question order) and demographics (gender, display type, and
age) factors using a seven-level ANCOVA with starting color treated as
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Fig. 4. Plotting thickness (x-axis), length (point size), and ND(50%,s)
(y-axis), we see that longer bars correspond to lower JND thresholds for
the same thickness. This behavior is asymptotic: as ratios between the
length and thickness become larger (e.g., large points on the left), ND50
values cluster more tightly together.

a random covariate. We found a significant effect of axis on perceived
difference (F(2,280) = 5.14, p < .007), with participants identifying
differences significantly more for L∗ axis stimuli (µL = 71.8%) than
b∗ (µb = 64.6%). We also found significant effects of both thickness
(F(1,280) = 112.65, p < .0001) and length (F(1,280) = 523.19, p <
.0001), suggesting that the Stone et al. [50] model used as a baseline
did not predict variation with size for bars. We found no evidence of
transfer (e.g., learning or fatigue), gender, or display effects. We did
find a significant effect of participant age (F(1,280) = 6.28, p < .02);
however, the effect did not reveal any systematic bias (R2 = .003).

6.2.2 Modeling
We first computed the discriminability rates for each combination of
axis × mark thickness × mark length × ∆E. We modeled all collected
data using the procedure discussed in §4.3. We first fit a linear regres-
sion to the discriminability rates and forced the regression through 0
to mitigate small fluctuations introduced by our data-driven approach.
All models fit with R2 > 0.89 (µR2 = .957,σR2 = .03, data available on
the project webpage). We found a significant fit along all three axes
between model slope and bar thickness and length:

NDL(p,s) =
p

0.1061− 0.0107
thickness −

0.003
r

(8)

NDa(p,s) =
p

0.0895− 0.0111
thickness −

0.0037
r

(9)

NDb(p,s) =
p

0.0751− 0.0113
thickness −

0.003
r

(10)

where r = length
thickness with L∗(F(2,45) = 61.3, p < .0001, R2 = .73), a∗

(F(2,45) = 76.2, p < .0001, R2 = .77), and b∗ (F(2,45) = 96.6, p <
.0001, R2 = .81) models all providing statistically significant fits to the
data. Figure 4 models ND(50%,s) computed from this data compared
to the point models.

Colors were generally more discriminable on bars than on scatter-
plots of equal thickness. Colors on longer marks were also more
discriminable than on shorter bars of equal thickness. Gains from
this elongation were asymptotic, generally leveling off at gains of 5∆E
to 10∆E (Fig. 4), with functions reaching an asymptote around a 2:1
ratio of length to thickness. Because our goals are to inform encoding



design, we specify our models as a function of thickness; however,
mark size can be expressed through four parameters: area, elongation
( longest edge

shortest edge ), longest edge, and shortest edge.
We conducted a four-factor ANOVA for the model slopes to dis-

entangle contributions of these parameters, testing both main effects
and specific interactions between area and edge length and between
elongation and edge length. We found main effects across all three axes
for elongation (FL(8,39) = 9.93, p < .004, Fa(8,39) = 3.05, p < .09,
Fb(8,39) = 14.62, p < .0005) and longest edge (FL(8,39) = 5.85, p <
.03, Fa(8,39) = 6.15, p < .02, Fb(8,39) = 15.6, p < .0003), but no
significant effect of area. We found interaction effects of elongation
× longest edge (FL(8,39) = 3.28, p < .08, Fa(8,39) = 5.39, p < .03,
Fb(8,39) = 3.8, p < .06) and elongation × shortest edge (FL(8,39) =
7.41, p < .001, Fa(8,39) = 3.11, p < .09, Fb(8,39) = 6.42, p < .02).

From these findings, a more precise model for elongated marks can
be expressed as a function of the shortest edge using:

NDL(p,s) =
p

0.1056− 0.0061
shortest −

0.0134
elongation

(11)

NDa(p,s) =
p

0.0881− 0.0067
shortest −

0.0117
elongation

(12)

NDb(p,s) =
p

0.0719− 0.0059
shortest −

0.0105
elongation

(13)

where elongation = longest edge
shortest edge with L∗(F(2,45) = 52.9, p < .0001,

R2 = .70), a∗ (F(2,45) = 77.7, p < .0001, R2 = .78), and b∗

(F(2,45) = 50.3, p < .0001, R2 = .69) models all providing statis-
tically significant fits to the data. It is important to note that these
edge models are limited in their statistical power as we did not collect
data at evenly distributed elongation ratios. Future work should collect
additional data at specific elongation ratios to validate this model.

The magnitude of the discriminability gains of elongated marks
suggest significant potential benefits for designers in considering mark
shape as part of their design processes. Considering the limited space
available for encodings (L∗ ranges from 0 to 100), gains from elon-
gation provide designers with significantly more encoding space than
point-models alone. Our findings imply that even when bars are wider
than they are tall, we can leverage our models to predict a conservative
baseline color difference threshold using a mark’s minimum thickness.
However, predictive guidance based on fixed bar thickness would not
be robust for very short vertical bars. In these cases, our models are best
used for post-hoc validation. When we anticipate marks will be elon-
gated, however, we can leverage these models for considerably more
aggressive encoding practices to maximize the possible discriminable
differences in data.

7 EXPERIMENT THREE: LINE GRAPHS

Experiment Two demonstrated that elongated bar marks increase per-
ceived color differences compared to diagonally symmetric point marks.
However, significantly elongated marks, such as lines, exceed the
asymptotic discriminability behaviors seen in Experiment Two and
are often visually asymmetric, curving according to parameters of
the data. Therefore, we can measure perceived color difference on
lines to generate models for color encoding design for marks beyond
these asymptotic bounds, allowing designers to maximize their use of
the encoding space based on prescribed line thickness. We anticipate
that lines will be significantly easier to discriminate than diagonally
symmetric points of equivalent thickness.

7.1 Methods
We tested color difference perception using six different line thick-
nesses, ranging from 0.05◦ (1 pixel) to 0.35◦ (9 pixels, Table 2). We
tested a smaller size range than with scatterplots as line thicknesses
tend to be much smaller than the diameter of scatterplot points. We gen-
erated test marks by plotting 38 y-values randomly sampled between 0
and 75 from a normal distribution. We plotted these values at uniform
intervals along the x-axis (300px) and then interpolated the resulting

points using a Bezier curve. To preserve a 5◦ spacing between the test
marks, one test mark was drawn between y = 0 and y = 75, and the
second was drawn between y = 200 and y = 275. To make the line
comparison task more natural, we juxtaposed marks vertically, rather
than horizontally. While we do not anticipate any confounds from this
choice, better understanding the impact of orientation on comparison
tasks is important future work. Figure 1 shows examples of the result-
ing plots for the largest and smallest line thicknesses. Distractor lines
were constructed using the same procedure, but mapped to a random
y position. Test marks were always rendered on top of the distractor
marks to avoid occlusion.

The models we used to compute color difference steps in Experi-
ments One and Two suggest very large step sizes for small marks (e.g.,
NDb∗(50%,0.05◦) = 63∆E). However, in piloting, we found that much
smaller color difference steps were often discriminable. As a result,
all thicknesses below 0.25◦ (6 pixels) were mapped to the same color
difference step sizes as 0.25◦ marks.

We ran a 6 (thicknesses, within) × 6 (color differences, within) × 3
(color axis, between) mixed-factors experiment to collect data for our
model. As with scatterplots, each participant saw each combination of
size and color difference twice, using a random test color, and presented
in a random order.

7.2 Results
We recruited 79 participants for this study. We excluded data from 5
participants for poor performance on the large-difference stimuli and
2 for response time, resulting in 72 participants (29 female, 43 male,
µage = 34.1±11.0; 5,688 trials, 24 participants per axis).

7.2.1 Analysis of Factors
We analyzed the frequency of reported differences across experimental
(axis, thickness, and question order) and demographic (gender, display
type, and age) factors using a six-level ANCOVA with target color
treated as a random covariate. We found a significant effect of axis
on perceived difference (F(2,61) = 5.2, p < .001), with participants
identifying differences significantly more frequently for L∗ axis stimuli
(µL = 62.0%) than a∗ or b∗ (µa = 77.9%; µb = 77.4%). We also found
a significant effect of line thickness (F(1,5) = 294.3, p < .0001), sug-
gesting that point-scale ∆E approximations did not adequately capture
JND across all line thicknesses. We found no evidence of transfer,
gender, age, or display effects.

7.2.2 Modeling
We first computed the discriminability rates for each of the 72 com-
binations of axis × line thickness × ∆E. Our regression mod-
els included all computed means and fit with R2 > 0.87 (Table 2,
µR2 = 0.94,σR2 = 0.02). As with points, lines also fit to an inverse
function of line thickness. The resulting models were:

NDL(p,s) =
p

0.0742− 0.0023
thickness

(14)

NDa(p,s) =
p

0.0623− 0.0015
thickness

(15)

NDb(p,s) =
p

0.0425− 0.0009
thickness

(16)

with L∗ (F(1,4)= 32.38, p< .005, R2 = .89), a∗ (F(1,4)= 18.03, p<
.02, R2 = .82), and b∗(F(1,4) = 13.94, p < .03, R2 = .77) models all
providing statistically significant fits to the data. Designers can select
their desired minimum sizes and JND levels (p) to compute NDp,s for
each axis to renormalize CIELAB using Eqn. 4 to compute differences
across all three axes for lines.

Figure 5 plots the 50% JND (ND(50%,s)) model for lines predicted
by our model against those from the individual regressions and against
the scatterplot models from Experiment One. We found that percep-
tible color differences for lines vary inversely with thickness, and
lines are significantly more discriminable than equally thick points.
However, the elongated areas provided by line graphs made marks



Table 2. Regression results for lines, where p = mx ∗∆X .

Axis Size (s) Size in Pixels Slope (m) R2 ND(50%) in ∆E
L 0.05◦ 2px 0.033 0.876 15.35
L 0.1◦ 3px 0.042 0.92 11.98
L 0.15◦ 4px 0.058 0.921 8.69
L 0.25◦ 6px 0.065 0.955 7.74
L 0.3◦ 7px 0.069 0.947 7.23
L 0.35◦ 9px 0.072 0.96 6.92
a 0.05◦ 2px 0.036 0.978 13.92
a 0.1◦ 3px 0.043 0.956 11.57
a 0.15◦ 4px 0.049 0.959 10.28
a 0.25◦ 6px 0.053 0.94 9.39
a 0.3◦ 7px 0.061 0.933 8.15
a 0.35◦ 9px 0.064 0.919 7.79
b 0.05◦ 2px 0.026 0.981 19.47
b 0.1◦ 3px 0.031 0.967 16.15
b 0.15◦ 4px 0.033 0.934 15.17
b 0.25◦ 6px 0.036 0.918 13.75
b 0.3◦ 7px 0.04 0.927 12.43
b 0.35◦ 9px 0.045 0.945 11.05

significantly easier to discriminate than scatterplot points. Further,
line thicknesses are less sensitive to variations in size, reflected in the
smaller coefficients in Fig. 5. For short lines (those below the asymp-
totic edge ratio), our bar models provide a closer approximation of
intended difference. However, most line marks far exceed this ratio. By
designing according to perceptual thresholds for lines, designers can
take advantage of the visual system’s capabilities to better discriminate
between elongated marks to help maximize use of available colors in
visualizations. The asymptotic behavior of elongation allows us to
provide more precise color difference metrics on asymmetric elongated
marks.

8 DISCUSSION

We provide preliminary steps towards a set of color difference models
tailored to visualizations. Our findings address three challenges in
leveraging models from color science for visualization:

• The Simple World Assumption: We replicate prior results that
indicate color perceptions can be measured in crowdsourced envi-
ronments to inform design practice [41, 50, 51].

• The Isolation Assumption: We measure color difference per-
ceptions in simple visualizations that include distractor marks
simulating possible data distributions.

• The Geometric Assumption: We compare color difference per-
ceptions on point, bar, and line marks, systematically varying
point diameter, bar thickness and length, and line thickness.

Our results suggest the importance of understanding color per-
ceptions in the context of visualizations. First, our models confirm
prior findings [50, 51] that traditional measures of color difference are
not robust for real-world viewing: a 2◦ JND for a scatterplot point
was roughly 3 times larger than that predicted in controlled environ-
ments [31]. By modeling perceived color difference as a function of
the probability a difference be detected (p), we allow designers control
over how robustly discriminable their encodings will be.

Second, our models allow designers to quantitatively reason about
trade-offs between encoding range and the number of discriminable
differences for visualizations. Effective color mappings have a limited
set of perceptible colors to work with, but need to make important
differences salient in the data. Our results indicate that just noticeable
color difference generally varies inversely with the thickness of a mark
and that elongated marks used in many visualizations (those where
one edge is longer than the other, such as bars and lines) are more
discriminable than to uniform marks with equivalent shortest edges.
By leveraging known design properties of a visualization, such as
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Fig. 5. Just noticeable differences between colors in a line graph shrink
significantly as line thicknesses grow larger. Lines are generally more
discriminable than equally wide scatterplot marks (dashed lines). Error
bars represent expected margin of error.

minimum bar or line thickness, we can allow designers to quantitatively
reason about the effectiveness of their encoding choices.

These models also allow us to identify limitations in existing encod-
ings. For example, ColorBrewer is heavily used in visualizations, but
its encodings were designed cartography, which generally use larger
marks than scatterplots or line graphs [18]. As a preliminary proof
of concept for applying our models to visualization design, we used
our 50% JND models to evaluate ColorBrewer for scatterplot points
and line graph lines approximating default Tableau parameters (10px
diameter and 4px thickness respectively). We found that 13 of the 18
ColorBrewer 9-step sequential ramps were not robust to these mark
sizes: only YlGn, YlGnBl, OrRd, YlOrBr, YlOrRd, and Reds retained
at least 1 JND between subsequent steps. 3 This application suggests
that visualization designers should closely consider size in selecting
encodings: even designer-curated encodings may not be robust for
many common visualizations. Some systems have begun to integrate
similar constraints into their visualizations. For example, Tableau 10 4

and d3-jnd 5 make use of size-dependent JND models. Size and mark
models such as those presented here provide a preliminary basis for
predicting robustness and refining encodings to help designers adapt
to the perceptual constraints of visualizations. Our future studies will
explore how robust popular encodings are for different visualization
types and can verify our models’ predictions against expert practices.

8.1 Limitations & Future Work

While our work significantly extends knowledge of color perception
for visualization, several aspects of our experiments exchange ecolog-
ical validity for modeling control. The limitations of this approach
provide opportunities for future refinement of these models and new
understandings of perception for visualization.

First, the visualizations themselves were constrained to support
task simplicity. For example, only the target marks were colored,
mitigating contrast effects present in real visualizations and simplifying
the experimental task. The lack of contrast effects is also why we opted
not to test heatmaps, which are generally heavily affected by contrast.
Marks were tested at fixed distances to avoid potential confounds from
variable distance comparisons [10]. Scatterplot points were aligned

3Details available at http://cmci.colorado.edu/visualab/VisColors
4https://www.tableau.com/about/blog/2016/7/colors-upgrade-tableau-10-

56782
5https://github.com/connorgr/d3-jnd



to reduce time costs associated with visual search. We anticipate that
our results have greater ecological validity than existing models, but
some of these simplifications may lead to inaccurate predictions in
some cases. Future work should extend these models to consider a
more holistic set of design factors. Part of this work should validate
the provided models by asking participants to compare datapoints in a
broader variety of real-world visualizations with color, mark size, and
data distributions drawn from real data and designer practices. This
study would verify how robust the mark-specific models are to the
simplifications made in these studies (e.g., the grey distractors and
simple visualizations).

Second, the models were generated using a sampling of crowd-
sourced participants. While the limitations of this choice are discussed
in detail in Szafir et al. [51], we anticipate that the use of crowdsourced
data actually improves the validity of these metrics for design applica-
tions, especially as toolkits such as D3 [6] and Vega [46] increasingly
simplify web-based visualization development. In prior studies, the
methodology used in this paper improved predictive performance for
the web from 14% accuracy with traditional models to 99% accu-
racy [51]. However, this method relies heavily on a representative
sample of users and provides little insight into precise mechanisms of
human vision due to noise introduced by variance in viewing conditions.
Because our results align closely with those predicted in prior models
(e.g., [41, 50, 51]), we believe our sample provides reliable metrics;
however, future work could extend the results presented here to larger
user samples, marks sizes, and specific types of devices. Further, as
display technology changes, the models may need to be revised at
regular intervals to accommodate new display parameters.

Finally, we elected to use CIELAB due to its common use in vi-
sualization, validated methodological use in past studies [51], and
computational simplicity. Future work may consider the use of more
complex color difference models, such as CIECAM02 [36]. We antici-
pate leveraging these spaces will result in more accurate and holistic
considerations of color difference perceptions; however, the Euclidean
renormalizations used here may not generalize well to more complex,
piecewise metrics. Future work will need to consider how to construct
data-driven adaptations of these models while still allowing efficient
computation and application.

8.2 Using the Models for Visualization
Visualization designers can use our results to quantitatively reason about
the effectiveness of their visualizations. We anticipate applications of
our metrics for encoding design, assessment, and refinement. For
example, designers often specify several properties of their intended
visualizations a priori, such as mark types and the range of allowable
mark sizes. These models allow designers to use known properties of a
visualization to guide color encoding choices: designers can generate a
threshold in CIELAB that identifies a minimum discriminability level
computed from the smallest allowable sizes and elongation factors
determined by the mark shape parameters. These thresholds enable a
priori evaluation and refinement of predesigned ramps to predict their
likely utility for the target design. These predictions allow designers to
anticipate and account for potential limitations of candidate encodings
in end designs.

Size parameters of certain mark types, such as areas and bar length,
cannot be specified without access to the target data. In these cases, the
specified models can be leveraged to instead verify when and how spe-
cific end visualizations might fail based on their color choices, similar
to ColourCheck [41]. In such cases, our models provide significantly
more precise estimates of perceived differences than existing systems,
which generally do not consider small or non-uniform marks. For ex-
ample, visualizations in data journalism generally use fixed datasets,
and journalists can use our models to estimate how accurately their
readers interpret color-encoded data.

In extensible visualization tools, where data is not fixed nor are its
properties known a priori, designers can use these models to automat-
ically refine their encodings by adapting the color ranges or bins to
support a prescribed number of discriminable steps when the data is
loaded. For example, when marks become smaller, systems might push

Large Points Small Points
Boosted 

Small Points

Fig. 6. We can use our models to automatically increase or decrease
differences between colored marks, pushing colors from the large scat-
terplot apart proportionally to preserve relative differences for our small
marks (right).

the endpoints of an encoding further apart to preserve desired distances.
Figure 6 shows the effects of increasing the distance between endpoint
colors to new sizes using JND proportions from our scatterplot mod-
els. Because these models rely on simple modifications to Euclidean
distance metrics, manipulating encodings based on desired difference
thresholds can be done in real-time.

9 CONCLUSION

In this paper, we measure factors of and construct data-driven models
for color difference perception in visualization. These models focus on
three mark types—points, bars, and lines—modeled across different
size parameters to generate a set of probabilistic metrics for guiding
color encoding design and evaluation. We find that our models align
well with previous in-practice models of color difference, but that
elongated marks, as commonly used in visualizations, significantly
increase discriminability over fixed-thickness models. We envision
these metrics as first steps towards building a quantitative understanding
of color perception in visualization and a broader discussion of the
adaptability of controlled perceptual models to the complexities of
visualization viewing in practice.
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[10] A. Brychtová and A. Çöltekin. The effect of spatial distance on the dis-
criminability of colors in maps. Cartography and Geographic Information
Science, pp. 1–17, 2016.

[11] N. Cao, J. Sun, Y.-R. Lin, D. Gotz, S. Liu, and H. Qu. Facetatlas: Multi-
faceted visualization for rich text corpora. IEEE Transactions on Visual-
ization and Computer Graphics, 16(6):1172–1181, 2010.

[12] R. C. Carter and L. D. Silverstein. Size matters: Improved color-difference
estimation for small visual targets. Journal of the Society for Information
Display, 18(1):17–28, 2010.

[13] W. Cleveland and R. McGill. Graphical perception: Theory, experimenta-
tion, and application to the development of graphical methods. Journal of
the American Statistical Association, 79(387):531–554, 1984.

[14] M. Correll, D. Albers, S. Franconeri, and M. Gleicher. Comparing averages
in time series data. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 1095–1104. ACM, 2012.
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[35] S. Mittelstädt, A. Stoffel, and D. A. Keim. Methods for compensating

contrast effects in information visualization. In Computer Graphics Forum,
vol. 33, pp. 231–240. Wiley Online Library, 2014.

[36] N. Moroney, M. D. Fairchild, R. W. Hunt, C. Li, M. R. Luo, and T. New-
man. The ciecam02 color appearance model. In Color and Imaging
Conference, vol. 2002, pp. 23–27. Society for Imaging Science and Tech-
nology, 2002.

[37] N. Moroney and H. Zeng. Field trials of the CIECAM02 color appearance
model. Publications-Commission Internationale De L’Eclairage CIE,
153:D8–2, 2003.

[38] K. Mullen. The contrast sensitivity of human colour vision to red-green and
blue-yellow chromatic gratings. The Journal of Physiology, 359(1):381–
400, 1985.

[39] B. Oicherman, M. Luo, B. Rigg, and A. Robertson. Effect of observer
metamerism on colour matching of display and surface colours. Color
Research and Applications, 33(5):346–359, 2008.

[40] L. Padilla, P. S. Quinan, M. Meyer, and S. H. Creem-Regehr. Evaluating
the impact of binning 2d scalar fields. IEEE Transactions on Visualization
and Computer Graphics, 23(1):431–440, 2017.

[41] K. Reinecke, D. R. Flatla, and C. Brooks. Enabling designers to foresee
which colors users cannot see. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, pp. 2693–2704. ACM, 2016.

[42] P. Rizzo, A. Bierman, and M. Rea. Color and brightness discrimina-
tion of white leds. In International Symposium on Optical Science and
Technology, pp. 235–246. International Society for Optics and Photonics,
2002.

[43] A. Robertson. Historical development of CIE recommended color differ-
ence equations. Color Research and Applications, 15(3):167–170, 2007.

[44] F. Samsel, M. Petersen, T. Geld, G. Abram, J. Wendelberger, and J. Ahrens.
Colormaps that improve perception of high-resolution ocean data. In
Proceedings of the 33rd Annual ACM Conference Extended Abstracts on
Human Factors in Computing Systems, pp. 703–710. ACM, 2015.
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