Modeling Color Difference for Visualization Design

Danielle Albers Szafir University of Colorado Boulder @dalbersszafir

Mode Warning: Colors and shadows on projectors ahead!

Follow along at: https://goo.gl/rQDWU7
Dantelle Albers Szafir University of Colorado Boulder
@dalbersszafir
VisuaLab

Seven Step Encoding in CIELAB

Seven Step Encoding From ColorBrewer

Seven Step Encoding From ColorBrewer

How does visualization design change how we perceive color encodings?

Factors for Color Difference in Visualization

Scatterplots

Bar Charts

Line Graphs
Summary \& Applications

Factors for Color Difference in Visualization

Scatterplots

Bar Charts

Line Graphs
Summary \& Applications

CIELAB

Commonly used in visualizations

Approximately perceptually linear

1 unit Euclidean difference equals
1 Just Noticeable Difference (JND)

CIELAB

Commonly used in visualizations

Approximately perceptually linear

Funit Fuclidean difference equals
1 Just Noticeable Difteretron (dND)

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Geometric Assumption

Crowdsourced Sampling

Szafir, Stone, \& Gleicher, 2014
Reinecke, Flatla, \& Brooks, 2016

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Geometric Assumption

Size-Based Sampling

Carter \& Silverstein, 2010
Stone, Szafir, \& Setlur, 2014

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Geometric Assumption

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Geometric Assumption

Area Marks

Visualizations violate three CIELAB assumptions

Simple World Assumption

Isolation Assumption

Geometric Assumption

Asymmetric Marks

Area Marks

Renormalize CIELAB per Mark Type

Scale each axis such that p\% of viewers will identify a difference at one unit of Euclidean distance - a p\% JND

Szafir, Stone, \& Gleicher, 2014 Stone, Szafir, \& Setlur, 2014

Factors for Color Difference in Visualization

Scatterplots - Diagonally Symmetric

Bar Charts

Line Graphs
Summary \& Applications

Do the colorful marks appear the same or different?

Reference Color

Differed by fixed amount on L*, a*, or b*

79 reference colors 36 total color differences

$L^{*}=50$ Distractor Marks

Random Gaussian with Overdraw Removed

6 (diameters, within) $\times 6$ (color differences, within) $\times 3$ (color axis, between)
81 participants on Mechanical Turk (5,668 trials)

25 pixels 1.0°

37 pixels
1.5°

50 pixels
2.0°

Factor Analysis:

ANCOVA with question order and source color as covariates

Modeling Process:

Compute rate of perceived differences for size x color difference
Model rates using linear regression fit to origin controlling for covariates

Sample linear models for desired probabilities
Fit logistic regression to the samples

$$
\begin{aligned}
& \mathrm{ND}_{\mathrm{L}}(50 \%, s)=5.095+\frac{0.80}{\mathrm{~s}}, \mathrm{R}^{2}=.93 \\
& \mathrm{ND}_{\mathrm{a}}(50 \%, s)=5.089+\frac{2.69}{\mathrm{~s}}, \mathrm{R}^{2}=.99 \\
& \mathrm{ND}_{\mathrm{b}}(50 \%, \mathrm{~s})=6.786+\frac{3.20}{\mathrm{~s}}, \mathrm{R}^{2}>.99
\end{aligned}
$$

$$
\Delta \mathrm{E}_{\mathrm{p}}=\sqrt{\left(\frac{\Delta \mathrm{L}}{\mathrm{ND}_{\mathrm{L}}(\mathrm{p})}\right)^{2}+\left(\frac{\Delta \mathrm{a}}{\mathrm{ND}_{\mathrm{a}}(\mathrm{p})}\right)^{2}+\left(\frac{\Delta \mathrm{b}}{\mathrm{ND}_{\mathrm{b}}(\mathrm{p})}\right)^{2}}
$$

Takeaways-Diagonally Symmetric Points

$7 x$ larger than existing models
Vary with inversely size Replicate Stone et al., 2014

Increased by distractor points

Factors for Color Difference in Visualization

Scatterplots

Bar Charts - Elongated

Line Graphs
Summary \& Applications

79 reference colors 36 total color differences

Mark size varies in two dimensions

6 thicknesses:

6 (thicknesses, blocked between) $\times 8$ (lengths, blocked between) $\times 6$ (color differences, within) $\times 3$ (color axis, between)

301 participants on Mechanical Turk (22,752 trials)

-rıus	
0.125°	6.0°

50 pixels $\times 3$ pixels 2.0°
0.125°

50 pixels $\times 150$ pixels 2.0°
6.0°

50\% JND for Bars

50\% JND for Bars

Takeaways-Elongated Marks

Vary with bar length \& thickness
Predicting data perceptions by
 thickness gives conservative model

Gains over points are asymptotic based on elongation

Factors for Color Difference in Visualization

Scatterplots

Bar Charts

Line Graphs - Asymmetric
Summary \& Applications

Do the colorful marks appear the same or different?

6 (thickness, within) $\times 6$ (color differences, within) $\times 3$ (color axis, between)
79 participants on Mechanical Turk (5,668 trials)

50\% JND for Lines

Takeaways-Asymmetric Marks

Vary with inversely with line thickness

Points are overly conservative for lines

Significant gains over points
164a* JND for 6 pixel points
9.4 $4 a^{*}$ JND for 6 pixel lines

Factors for Color Difference in Visualization

Scatterplots

Bar Charts

Line Graphs
Summary \& Applications

Factors Effecting Color Encodings

Simple World Assumption:
Viewing visualizations online introduces variation in data discrimination
Isolation Assumption:
The presence of other points complicates data discrimination
Geometric Assumption:
Data discrimination varies inversely with mark size Elongating marks increases data discrimination asymptotically

000000000

Guide Effective Designs

Guide Effective Designs

Encoding Validation

Nine-step sequential Brewer ramps; 4px lines \& 10px points

Encoding Validation

IIIIIIIIIIIIIII

Nine-step sequential Brewer ramps; 4px lines \& 10px points

Encoding Validation

13 of 18 nine-step sequential Brewer ramps are not robust

Thanks!

Data available at http://cmci.colorado.edu/visualab/VisColors/

National Science Foundation NSF CRII: CHS \#1657599

Danielle.Szafir@Colorado.edu @dalbersszafir

