Modeling Color Difference for Visualization Design

Danielle Albers Szafir University of Colorado Boulder @dalbersszafir

Mode for Vi

Warning: Colors and shadows on projectors ahead!

Follow along at: https://goo.gl/rQDWU7

Danielle Albers Szafir University of Colorado Boulder @dalbersszafir

Seven Step Encoding in CIELAB

How does visualization design change how we perceive color encodings?

Factors for Color Difference in Visualization

Scatterplots

Bar Charts

Line Graphs

Summary & Applications

Factors for Color Difference in Visualization

Scatterplots

Bar Charts

Line Graphs

Summary & Applications

CIELAB

Commonly used in visualizations

Approximately perceptually linear

1 unit Euclidean difference equals
1 Just Noticeable Difference (JND)

CIELAB

Commonly used in visualizations

Approximately perceptually linear

Simple World Assumption

Isolation Assumption

Simple World Assumption

Isolation Assumption

Simple World Assumption

Isolation Assumption

Geometric Assumption

Crowdsourced Sampling

Szafir, Stone, & Gleicher, 2014 Reinecke, Flatla, & Brooks, 2016

Simple World Assumption

Isolation Assumption

Simple World Assumption

Isolation Assumption

Simple World Assumption

Isolation Assumption

Simple World Assumption

Isolation Assumption

Geometric Assumption

Size-Based Sampling

Carter & Silverstein, 2010 Stone, Szafir, & Setlur, 2014

Simple World Assumption

Isolation Assumption

Simple World Assumption

Isolation Assumption

Diagonally Symmetric Marks

Elongated Marks

Asymmetric Marks

Area Marks

Simple World Assumption

Isolation Assumption

Diagonally Symmetric Marks

Elongated Marks

Asymmetric Marks

Area Marks

Renormalize CIELAB per Mark Type

Scale each axis such that p% of viewers will identify a difference at one unit of Euclidean distance – a **p% JND**

Szafir, Stone, & Gleicher, 2014 Stone, Szafir, & Setlur, 2014

Factors for Color Difference in Visualization

Scatterplots – Diagonally Symmetric

Bar Charts

Line Graphs

Summary & Applications

Do the colorful marks appear the same or different?

79 reference colors 36 total color differences

Random Gaussian with Overdraw Removed

6 (diameters, within) × 6 (color differences, within) × 3 (color axis, between)

81 participants on Mechanical Turk (5,668 trials)

Factor Analysis:

ANCOVA with question order and source color as covariates

Modeling Process:

Compute rate of perceived differences for size x color difference

Model rates using linear regression fit to origin controlling for covariates

Sample linear models for desired probabilities

Fit logistic regression to the samples

Szafir, Stone, & Gleicher, 2014 Stone, Szafir, & Setlur, 2014

$$ND_{L} (50\%, s) = 5.095 + \frac{0.80}{s}, R^{2} = .93$$
$$ND_{a} (50\%, s) = 5.089 + \frac{2.69}{s}, R^{2} = .99$$
$$ND_{b} (50\%, s) = 6.786 + \frac{3.20}{s}, R^{2} > .99$$

$$\Delta E_{p} = \sqrt{\left(\frac{\Delta L}{ND_{L}(p)}\right)^{2} + \left(\frac{\Delta a}{ND_{a}(p)}\right)^{2} + \left(\frac{\Delta b}{ND_{b}(p)}\right)^{2}}$$

Takeaways—Diagonally Symmetric Points

7x larger than existing models

Vary with inversely size Replicate Stone et al., 2014

Increased by distractor points

Factors for Color Difference in Visualization

Scatterplots

Bar Charts – Elongated

Line Graphs

Summary & Applications

79 reference colors 36 total color differences

Mark size varies in two dimensions

6 thicknesses:

E pivola EO pivola

6 (thicknesses, blocked between) × 8 (lengths, blocked between) × 6 (color differences, within) × 3 (color axis, between)

301 participants on Mechanical Turk (22,752 trials)

Takeaways—Elongated Marks

Vary with bar length & thickness

Predicting data perceptions by thickness gives conservative model

Gains over points are asymptotic based on elongation

Factors for Color Difference in Visualization

Scatterplots

Bar Charts

Line Graphs – Asymmetric

Summary & Applications

Do the colorful marks appear the same or different?

6 (thickness, within) × 6 (color differences, within) × 3 (color axis, between)

79 participants on Mechanical Turk (5,668 trials)

6 pixels 0.25°

7 pixels 0.30°

9 pixels 0.35°

Takeaways—Asymmetric Marks

Vary with inversely with line thickness

Points are overly conservative for lines

Significant gains over points $16\Delta a^*$ JND for 6 pixel points $9.4\Delta a^*$ JND for 6 pixel lines

Factors for Color Difference in Visualization

Scatterplots

Bar Charts

Line Graphs

Summary & Applications

Factors Effecting Color Encodings

Simple World Assumption:

Viewing visualizations online introduces variation in data discrimination

Isolation Assumption: The presence of other points complicates data discrimination

Geometric Assumption:

Data discrimination varies inversely with mark size Elongating marks increases data discrimination asymptotically

Encoding Validation

Nine-step sequential Brewer ramps; 4px lines & 10px points

Encoding Validation

Nine-step sequential Brewer ramps; 4px lines & 10px points

Encoding Validation

13 of 18 nine-step sequential Brewer ramps are not robust

Data available at http://cmci.colorado.edu/visualab/VisColors/

National Science Foundation NSF CRII: CHS #1657599 Danielle.Szafir@Colorado.edu @dalbersszafir