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Figure 1: Examples of archetypal robot interfaces are shown above. This paper highlights opportunities for improving robot 
interface design by integrating knowledge of data visualization and recognizing the importance of data analysis tasks in HRI. 

ABSTRACT 
Human-robot interaction (HRI) research frequently explores how 
to design interfaces that enable humans to efectively teleoperate 
and supervise robots. One of the principle goals of such systems is 
to support data collection, analysis, and human decision-making, 
which requires representing robot data in ways that support fast 
and accurate analyses by humans. However, the interfaces for these 
systems do not always use best-practice principles for efectively 
visualizing data. We present a new framework to scafold reasoning 
about robot interface design that emphasizes the need to consider 
data visualization for supporting analysis and decision-making pro-
cesses, detail several data visualization best-practices relevant to 
HRI, identify a set of core data tasks that commonly occur in HRI, 
and highlight several promising opportunities for further synergis-
tic activities at the intersection of these two research areas. 
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1 INTRODUCTION 
Robots are increasingly helping humans explore environments, col-
lect data, and manipulate the physical world. Historically, robot 
deployments have required signifcant human oversight and direct 
intervention, leading to human-robot interfaces that focus primarily 
on supporting human supervision and teleoperation of robot activ-
ities. However, advances in sensing, actuation, and autonomy are 
rapidly expanding robot capabilities and creating new opportuni-
ties for scientists, engineers, and analysts to collaboratively engage 
with robots to accomplish domain-related tasks, such as mapping 
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archaeological sites [27] or inspecting building integrity [95]. In 2 BACKGROUND 
such scenarios, users may be less interested in directing low-level 
aspects of robot operation and may instead focus on accomplishing 
the overall mission objective by synthesizing knowledge products 
created by robots, such as analyzing new data samples the robot 
provides, investigating maps the robot creates, or working with a 
robot to understand and reduce contextual uncertainties or improve 
data quality. As robot capabilities advance, human-robot interfaces 
will increasingly need to support such data-centric activities. 

Reasoning about data-centric human-robot interaction is also 
critical for for systems that focus on traditional aspects of robot 
operation and/or supervision due to limitations in robot autonomy 
(e.g., many of the systems shown in Figure 1) as humans must un-
derstand robot data, often provided as camera feed(s), map overlays, 
sensor readouts, point clouds, or even mixed and virtual reality dis-
plays, to build situational awareness sufcient for directing robots 
efectively. However, designing robot interfaces that support users 
in both directing robots and understanding robot-collected data 
remains a challenge. For instance, Murphy & Tadokoro [94] note 
that “the End-User interface is the most difcult to build because it 
requires a working prototype of the robot, an initial interface, and 
access to high fdelity feld conditions, and multiple end users for 
a domain analysis.” We argue that another major reason that such 
interfaces have historically been, and remain, so difcult to design 
is that interface researchers and developers are often members of 
the human-robot interaction (HRI) and feld robotics communities 
who may have little connection with the data and information visu-
alization communities (VIS), a feld of research exploring guidelines 
for helping people quickly and accurately make sense of data. While 
some HRI practitioners may have training in visualization tech-
niques, we believe there is a general opportunity to substantially 
improve robot interface design by leveraging knowledge of how to 
efectively encode data for human users. 

In this work, we argue for increased collaboration between ex-
perts in robotics and data visualization, motivated by the need 
for robotic interfaces to increasingly consider and provide direct 
support for data analysis. Our goal is to begin to bridge the di-
vide between HRI and VIS, recognizing that there is a consid-
erable potential for natural synergies between HRI, which 
develops interfaces that enable humans to efectively direct 
and/or supervise robots while also making use of the data 
such robots collect, and information visualization, which fo-
cuses on designing interfaces that allow people to build tar-
geted knowledge through data. We argue that robot interfaces 
need to increasingly consider how users will engage with data 
provided by robots and thus be designed not only from a robotics-
centric, but also a data-centric perspective. In addition, we note that 
robotics ofers rich opportunities for novel VIS research, particularly 
in identifying practices for dynamic, uncertain, and spatio-temporal 
data. Capitalizing on such opportunities will require co-innovation 
and knowledge of the state-of-the-art in both felds. To this end, we 
briefy review major guidelines and best-practices from the VIS com-
munity that are relevant to HRI and propose an initial framework to 
guide potential parallel developments in HRI and VIS, understand 
HRI data tasks and activities, and identify potential connections 
and opportunities for future work in this space of data-centric HRI. 

This paper is written from the perspective of two authors, one from 
the HRI community and the other from VIS, to help both communi-
ties recognize the opportunities each feld has to inform the other. 
We believe there are clear opportunities for mutual beneft; how-
ever, while the two felds draw on common intellectual traditions 
(e.g., human-computer interaction, cognitive science, etc.), to date 
HRI and VIS have developed largely in isolation from one another. 
For example, we searched the entire corpus of the IEEE VIS confer-
ence from 1990 to 2019 using the term “robot” and found only one 
paper (by one of the co-authors) exploring analytic systems where 
users might work collaboratively with robots that are supplying 
feld data [148]. However, robotics was not the primary focus of 
the paper and no robot was used in the research. 

We similarly surveyed IEEE Transactions on Visualization and 
Computer Graphics (TVCG), the premier journal for visualization 
research (as well research from other communities such as virtual 
reality). We identifed only three relevant papers: one paper (from 
more than 20 years ago) on visualizing robot sensors to help devel-
opers understand how the sensors work and improve object iden-
tifcation algorithms [140] and two papers combining augmented 
reality and aerial robots [40, 160]. However, the latter two papers 
did not originate from, or take advantage of knowledge within, 
the data visualization community, but rather came from the adja-
cent mixed and virtual reality communities, although they further 
demonstrate potential opportunities for better synergies between 
HRI and related felds (see similarities to recent HRI research in 
robotics and mixed reality, e.g., [57, 109, 114, 115, 146, 147]). 

This survey, paired with the expertise of the authors, indicates 
that robot data has not been actively investigated in VIS despite 
research within VIS on developing tools for a range of other domain-
focused problems, such as biology, machine learning, and environ-
mental science. But what about the other perspective: is the HRI 
community well versed in VIS research and best practices? We 
surveyed all publications from the IEEE/ACM International Con-
ference on Human-Robot Interaction (HRI) using the keyword “vi-
sualization,” which resulted in 262 papers, many of which focused 
on developing robotic interfaces that include various aspects of 
data visualization (e.g., maps, video overlays, sensor displays, etc.). 
However, we could not identify a single paper that cited any work 
from the VIS community, meaning that such interfaces may have 
been designed without considering state-of-the-art principles for 
efective data visualization. Likewise, we were only able to identify 
one relevant paper [63] and one Late-Breaking Report (LBR) [118] 
from HRI that cited visualization work from TVCG. 

While a lack of cross-disciplinary citations is not necessarily 
proof of a lack of knowledge transfer between HRI and VIS (certain 
principles may be considered “foundational” and thus have no need 
for direct citations), based on the authors’ experiences and our sur-
vey of VIS, TVCG, and HRI, we believe that HRI-VIS collaborations 
are rare and opportunities exist for greater ideological interchange. 
This paper highlights such opportunities in synergies across HRI 
and VIS. It is primarily framed for an HRI audience, focusing on how 
knowledge from VIS may support robot interface design, although 
§6 outlines how HRI ofers potential for innovation in VIS. 



2.1 Scope 
Our objective is to explore how research in visualization may im-
prove interface design for robotics, recognizing that one of the 
fundamental activities for human-robot teams is to collect and an-
alyze data. We specifcally focus on human-robot teams working 
collaboratively towards a predefned objective, as in search-and-
rescue, collecting data at feld sites, telerobotics for space, marine, 
or terrestrial applications, etc., where some form of technology 
serves a mediating role in the interaction (i.e., there is an explicit 
visual interface through which data can be conveyed). Such sce-
narios may involve collocated (e.g., an emergency responder in 
the feld interacting with a nearby drone through a smartphone or 
tablet interface) or remote interaction (e.g., an astronaut on board 
a space station working with a robot deployed on the lunar surface 
via a traditional laptop or more advanced virtual or mixed reality 
interface). We do not consider purely social human-robot interac-
tions, interactions that lack any overarching team objective(s), or 
interactions where there is no mediating technology that could 
support visual data communication (e.g., a collocated human-robot 
interaction with exclusively verbal or gestural interaction). 

2.2 Human-Robot Interface Design 
A full survey of human-robot interfaces is beyond the scope of this 
work (relevant surveys and design guidelines from robotics can be 
found in [2, 22, 34, 73, 94, 154, 156] and metrics in [32, 139]). How-
ever, we briefy review several major trends in robot interface design 
to ground our analysis. Existing interfaces primarily support user 
situational awareness (SA) and user control. HRI has extensively ex-
plored various aspects and levels of SA, including categories of SA 
relevant to human-robot interfaces (e.g., human-robot awareness, 
robot-human awareness, location awareness, activity awareness, 
surroundings awareness, status awareness, overall mission aware-
ness, etc.) [36–38] and interactions between SA and robot autonomy 
levels [3]. HRI has similarly explored control paradigms across the 
spectrum of teleoperation and supervision (e.g., shared control 
[14, 35], collaborative control [42], delegation schemes [142], and 
more exotic systems such as the “adverb pallette” [133], etc.). 

Robot interface design frequently investigates how to provide 
users with information from both robot camera feeds and maps 
derived through low-level sensors and/or higher-level perception 
systems. For instance, several early projects examined the relative 
usefulness of map and video data [98] and explored how both data 
types might be fused into a single overlay display [15, 29, 99, 154]. 
Systems continue to adopt this paradigm while leveraging modern 
graphics capabilities (e.g., [41, 116]). Keyes et al. [78] provides a 
review of both map-centric and video-centric robot interfaces as 
part of an iterative interface design for remote robot teleoperation, 
borrowing not only from certain robot interface design guidelines 
available at the time [129, 153], but also general user interface de-
sign heuristics from human-computer interaction (HCI) [100]. More 
recently, Murphy & Tadokoro [94] enumerate overlaps between 
general HCI principles and robotic interface design, but note that 
HCI principles alone are insufcient for robotics. 

Other major aspects in robot interface design research include 
determining what sensor information may be useful, developing 
predictive control systems (particularly for high-latency operations 

[9]), and enabling a cohesive workfow across planning, execution, 
and live plan adjustments/re-planning [45, 91, 92, 142] (Fig. 1b illus-
trates this evolution). Several guidelines for robot interface design 
have been proposed, often based on refections from robot compe-
titions (e.g., DARPA challenges, Fig. 1c) [71, 103, 153, 154] or real 
feld deployments, such as in disaster response eforts for 9/11 [19] 
(Fig. 1a) or the Fukushima-Daiichi disaster [76]), with recent work 
[94] suggesting 32 diferent guidelines for feld robot interfaces 
(we review the intersection between some of these guidelines and 
VIS best practices throughout this work). Such guidelines, particu-
larly when combined with paradigms such as coactive design [69] 
that consider the interrelationships between humans and robots, 
may help HRI researchers and practitioners reason about various 
user concerns, such as SA. However, little work has considered 
principled methods for how these interfaces may visualize data to 
specifcally help user analysis and decision-making. Findings and 
practices from VIS may help address this gap. 

2.3 Information Visualization as a Discipline 
Visualization research ofers principles and design methods for cre-
ating interfaces that help people efectively reason with data. To 
help understand when and how information visualization principles 
may inform robotic interfaces, we aim to establish a common lexi-
con and way of structuring problems to translate practices between 
disciplines (see §3). We start by discussing relevant defnitions, 
knowledge, and guidelines from VIS. 

Data analysis is the process of exploring and making sense of 
data, where data consists of measurable artifacts. This data may 
be qualitative (e.g., the type of task the robot is performing) or 
quantitative (e.g., the current battery life of the robot or a sensor 
measurement). People engage in data analysis to develop insights: 
specifc, meaningful conclusions drawn from data [102]. For ex-
ample, a user may detect a potential survivor using hot spots in a 
thermal scan or determine that a wall is structurally sound based 
on visual inspection and sensor measures. Insights collectively help 
analysts use the data to expand their knowledge of a problem or 
situation and to inform decisions and actions. 

Visualizations are designed to help people develop insights from 
data. In contrast with fully automated analyses, such as database 
queries or machine learning, visualization supports users in analyz-
ing data across a variety of questions using a single representation 
[17]. By ofering users the agency to fuidly explore data to answer 
their questions, insights may “snowball,” allowing users to change 
questions on the fy. Users can interact with visualizations to reveal 
new information or focus on diferent patterns as insights develop. 

Visualization ofers a valuable tool for HRI as the agency, fexi-
bility, and control over the data analysis process provided by visu-
alizations may support users in developing situational awareness, 
adjusting operations in dynamic environments, and rapidly and 
intuitively assessing mission state across multiple factors and mea-
sures. However, for visualizations to be efective, they must consider 
the tasks—the specifc information people look to draw from data, 
e.g., fnding relevant data values, estimating statistical quantities, 
or comparing patterns across data sources—that users want to ac-
complish with their data (see [5, 130] for surveys). Note that the VIS 



defnition of task (referred to here as data tasks for clarity) difers 
substantially from how HRI commonly defnes tasks. 

A visualization’s design determines the data tasks it best sup-
ports. For example, while line graphs convey trends, people are 
fve times more likely to focus on quantities in bar charts [157]; 
heatmaps efciently convey summary statistics, while line graphs 
support value estimation [4]. Tasks can inform designs that opti-
mize for target applications [6]. While robots are commonly used 
to collect data, the corresponding data tasks are seldom directly 
enumerated. As a result, robotic interfaces often use visualizations 
with suboptimal designs. Common examples include: 

(1) Overview First: Nearly all analyses require frst understanding 
the overall picture provided by the data before gathering spe-
cifc details [134]. However, many robotic interfaces show all 
information in the highest available level of detail frst, poten-
tially overwhelming the user (Fig. 1e). Others focus only on the 
immediately available details, removing context for those de-
tails (Fig. 1a). Efective interfaces should minimize unnecessary 
detail while retaining sufcient context, providing additional 
detail only when requested by the user. 

(2) Color Choices: Robotic interfaces commonly use rainbow (Fig. 
1c) or red-green color schemes (Figure 1e) (e.g., every system 
surveyed in [103] used one of these two maps). Rainbows are 
inefective for many reasons, including inaccurate value esti-
mation, difculty directing attention to specifc information, 
and artifcial “bands” falsely grouping data [12, 143], causing 
potential inefciencies and false conclusions that can mislead 
developers and other users. For example, rainbows can decrease 
ROI detection by 30% [10]. Red-green schemes more precisely 
represent values but are inaccessible for colorblind users (8% 
of people [151]). Further, green-good/red-bad mappings recom-
mended by existing guidelines [94] do not hold for all cultures 
[68]. Visualization tools (e.g., ColorBrewer [54], Colorgorical 
[50], Color Crafter [137]), and guidelines [135] (e.g., use light-
ness to encode numeric values [119]) can readily guide improved 
color choices in robotic interfaces in as little as one line of code. 

(3) Comparing Data: Existing guidelines encourage interfaces that 
tile a set of visualizations that each answer a single question 
[94]; however, too many juxtaposed visualizations may make it 
harder to reason across data [66]. Interfaces may alternatively 
choose to superimpose datasets (i.e., overlay data on a common 
space as in [99]) or explicitly encode (i.e., compute and visualize) 
relevant relationships between datasets [48]. Robotic interfaces 
have experimented with diferent forms of comparison (Fig. 1a, 
1b, 1d). Prior studies of teleoperation interfaces suggest that the 
right design depends on the goals of the interaction [15, 99, 154]. 
Best practices in composite visualization [67], dashboard design 
[126], and visual comparison [47] may help illuminate trade-ofs 
between designs based on the available data and users’ goals. 

While visualization research ofers guidelines for how to support 
data tasks in isolation, data in HRI typically informs a variety of 
both data and robotic tasks. These tasks may interact with each 
other in complex ways and may also interact with external aspects, 
such as domain standards or aspects of the data distributions [80]. 
Visualization ofers a suite of methods for designing data visualiza-
tions that support key tasks and integrate contextual knowledge 

about a user’s data, constraints, and goals [6, 132]. Integrating data 
visualization principles into robot interfaces through such methods 
can improve HRI by better facilitating sensemaking. 

Sensemaking, a key principle within VIS, defnes the process 
of how humans work with information, including that extracted 
directly from data and relevant context or expert knowledge, to 
generate conclusions or actions [110, 124]. Sensemaking asserts 
that we can use information to reason about the current state of 
the world and use that reasoning to build awareness and inform 
action. One common outcome of sensemaking is decision making, 
which occurs when people must choose between a set of options 
(e.g., determine which building to investigate) or courses of action 
(e.g., the best route to explore a building). When people use visual-
izations to engage in decision making, they use patterns in data to 
form knowledge that provides holistic context to their decision. For 
example, they may reason about where they predict fre will spread 
to choose how to deploy limited resources, how certain they are 
that a hotspot on a map represents a person rather than a sensor 
error, or how much risk there is to a particular structure [106]. Some 
decisions use only the information presented in the visualization 
(i.e., they are exclusively based on the data), while others require 
integrating data with expertise or contextual information to reason 
across a broad body of factors. 

We believe that the design of robot interfaces can be improved 
by explicitly considering and designing for sensemaking and de-
cision making processes, including determining the information 
and data tasks necessary for accomplishing a given objective. To 
help interface designers better reason about the use and presen-
tation of data in robotics, we present a framework that may help 
HRI researchers take this more data-centric view while retaining 
traditional considerations regarding robot control and supervision. 

3 TOWARDS DATA-CENTRIC HRI 
We propose a framework that emphasizes the data-oriented pro-
cesses within human-robot interactions to help researchers reason 
about the design of new HRI interfaces and inspire deeper col-
laborations between visualization and robotics. Our framework 
is structured around data fow among human(s) and robot(s) as 
it relates to accomplishing a shared core Objective. Each individ-
ual team member carries out various Activities, formed through 
sequences of Actions, in service to the Objective. We visually 
illustrate our framework for team data fow in Fig. 2 and detail each 
framework component in Table 1. 

In this framework, data can fow between humans and robots in 
two main ways: (1) at the Action level, where a human might query 
a robot regarding a particular sensor reading/group of readings or 
direct the robot to perform a Robot Action (e.g., explore a certain 
region) or a robot might query a human to take advantage of human 
perceptual or decision-making processes (e.g., is it safe for the robot 
to move forward) as in collaborative control paradigms [42], and (2) 
from the robot Autonomous Processes to the robot interface for 
use in the human Data Analysis Process. HRI has traditionally 
focused on the frst type of information fow (supporting humans 
in directing Robot Actions). Generating data for the second type 
of fow has been a major focus of traditional robotics (e.g., im-
proving SLAM, supporting autonomous reasoning, etc.), although 



Figure 2: We present a framework based on human-robot 
data fow that visualizes the traditional focii of HRI, robot-
ics, and VIS research and highlights Data Analysis Processes 
as a critical consideration for robot interface design. 

such research is often motivated from the perspective of improving 
robot autonomy rather than improving human-robot teamwork. 
Our framework highlights that such data will directly feed into the 
human’s Data Analysis Process (i.e., sensemaking, a traditional 
focus of VIS) to generate new knowledge and insights that inform 
more efective Human Actions towards the team Objective. 

Our framework bridges perspectives in HRI, robotics, and VIS to 
understand how crossovers between the felds can inform systems 
that allow robots and humans to collaboratively achieve a given ob-
jective. Our goal is for this framework to complement (not replace), 
other models from HRI (e.g., coactive design [69] considerations, 
the GEDIS framework for evaluating robot interfaces [111, 159], 
video game-based frameworks for characterizing interaction design 
[117], etc.) and related areas within HCI and cognitive science (e.g., 
distributed [60] and situated cognition [23], the human action cycle 
[101], etc.). Each of these models views interactions at diferent 
levels of abstraction; our framework aims to specifcally highlight 
the role of the Data Analysis Process in HRI. 

4 HRI DATA TASKS 
A core component of our framework is recognizing that users regu-
larly engage with various Data Tasks to build knowledge through 
the Data Analysis Process to inform human Actions. To identify 
these Data Tasks, we surveyed papers across HRI and feld robot-
ics, covering a diverse set of domains including search-and-rescue 
[8, 34, 49, 73, 75, 150], emergency/disaster response [19, 95, 131], 
terrestrial [77, 94, 99, 109, 114, 115, 154], marine [13, 27, 65, 136], 
and space [18, 44, 81, 90, 97] exploration/search/environmental data 
collection, DARPA robotics challenges [69, 71, 88, 103, 104], health 
systems [28], unmanned aerial systems [21, 29, 45, 70, 91, 159], agri-
cultural robotics [1], and large robot teams [123]. We analyzed each 
paper using our framework, decomposing the stated human-robot 
interactions into the various framework components to understand 
what data insights and knowledge users would need to accomplish 
their intended objectives (regardless of whether the interface was 
explicitly designed to support such analysis). 

This process revealed seven Data Tasks commonly conducted 
using existing interfaces (c.f., Fig. 3). These tasks provide a direct 
bridge to relevant best practices, techniques, and fndings from VIS 
that may inform more efective data-centric interfaces. While not 
exhaustive, this list refects common themes we observed across 
HRI scenarios that we can connect to techniques and practices in 
VIS to inform future interfaces. We use Fig. 1f, a notional redesign 
of Fig. 1e created using our framework, as a running example of 
how these tasks can inform interface design in a rich and complex 
HRI scenario (see Appendix A for details on this redesign). 

Each of these tasks requires that users estimate specifc statis-
tics or data values of interest. While we do not explicitly discuss 
statistical estimation tasks below, they are a universal consider-
ation. Visualization ofers quantifed design insight into how to 
best encode data for tasks such as estimating individual values [24], 
assessing trends [30], approximating averages or variance [4], and 
inferring correlation [53]. For example, people are 25% more accu-
rate at averaging values in heat maps than in line graphs, but 45% 
more accurate in identifying maxima using line graphs [4]. Such 
component statistics often form the basis for more complex tasks, 
including the seven discussed below. However, we caution that 
VIS is a rich, multifaceted design problem, much as HRI itself. As 

Table 1: Details of each framework component depicted in Figure 2 
Objective: a set of common goals, contexts, and criteria for success determined by the domain and known by the team in advance

Agent Human(s) Robot(s)

Activities
Sequence of Human Actions taken in service to the larger Objective (e.g., 
searching a particular set of coordinates within an overall mission framework or 
monitoring robot health) as informed by individual human sub-goals and user roles.

Sequence of linked Robot Actions taken in service to the larger 
Objective (e.g., a robot performing a search activity or an inspection 
activity).

Actions

Set of specific acts and decisions, informed by the Data Analysis Process, that a 
human performs, which may involve the robot directly (e.g., tasking the robot to 
collect data or manipulate an object), indirectly (e.g., deciding whether to 
investigate an area further or move on), or not at all (e.g., radioing to another 
human in the field to communicate an insight).

Set of specific acts, informed by the robot’s Autonomous Processes, 
that a robot performs (e.g., collecting a soil sample or querying a human 
to determine if it is safe to proceed); in the traditional robotics 
sense/plan/act paradigm (i.e., perception/cognition/actuation), this 
represents act.

Data Analysis Process
The steps a human collaborator takes to make 

sense of robot data, which may be about the robot 
(e.g., robot battery level) or collected by the robot 
(e.g., environmental readings). In essence, this 

represents the data sensemaking process.

Knowledge 
Formation

Synthesizing patterns and statistics from data into insights that expand the 
human’s knowledge and understanding of the Objective and drive Actions.

Data Tasks Foraging for relevant information in the data to answer questions about the 
Objective, which can drive Knowledge Formation.

Autonomous Processes
The set of low-level robot functional primitives that 

enable more complex robot actions.

Reasoning The robot’s inference and belief estimation capabilities (i.e., 
planning/cognition sub-systems).

Perception The robot’s sensing, localization, mapping, and object detection 
capabilities (i.e., sense sub-systems).



visualizations are often used because users need to achieve multiple 
tasks at once, empirical VIS results should scafold reasoning about 
design/task trade-ofs, rather than provide algorithmic guidance. 

Find Relevant Information: Users must efciently detect key 
information about a given Objective. For example, they may need 
to locate a door handle to turn it [71] or determine areas of safe air 
quality. Interfaces can draw users’ attention to potentially relevant 
information by manipulating the salience of that data [16, 56, 89]. 
For instance, an interface may make incoming data more opaque 
and stale data more transparent. Interfaces can also make criti-
cal data “pop-out.” However, providing too much information can 
make key data harder to fnd, a phenomena known as visual clutter 
[122], which visualization techniques like aggregation or fltering 
can address [39]. For example, drawing trajectories in multirobot 
systems can make it hard to assess any individual trajectory (Fig. 
1e). Techniques like edge bundling [61] may simplify trajectory 
collections to emphasize patterns across robots. Interfaces can then 
provide precise information about any single trajectory on demand. 
Alternatively, if Human Actions require assessing individual tra-
jectories, managing the salience of key trajectories through bolding 
or related techniques and using encodings that readily distinguish 
robots, such as diferently nameable colors [50], can help manage 
clutter and make focusing on individual robots easier (Fig. 1f). 

Synthesize Data Across Sources: Robot data is frequently multi-
dimensional: it contains many variables often from many sources 
(e.g., a sensor suite or measures of robot state) or even within any 
single source (e.g., position, color, and time in camera feeds). Visu-
alizations can help people combine data across sources to generate 
insights, providing context for holistic decision making and al-
lowing users to rapidly answer complex questions. Interfaces can 
support this combination by, for example, explicitly allowing users 
to compare data using a suite of visual comparison techniques, in-
cluding juxtaposition (putting data side-by-side; Fig. 1a, 1c, 1d, & 
1f), superposition (layering data on a common set of axes; Fig.1b), 
or explicitly computing and visualizing key relationships between 
data sources. These methods of supporting comparison across vari-
ables ofer trade-ofs in precision, clarity, ease of use, and other 
factors that interface designers can select between based on the 
users’ needs (see [47, 48, 66] for discussions). 

Most robot interfaces and interface design guidelines encourage 
juxtaposed visualizations [94]. While overreliance on juxtaposed 
views can introduce clutter and inhibit comparisons by pushing 
charts further apart [149], dashboard design practices from VIS may 
inform efective multiview interfaces [126]. Such interfaces can fol-
low a suite of best practices to support people in readily connecting 
related information across displays, such as using consistent scales, 
visual channels (e.g., size, position, color), and mappings and not 
duplicating encodings across unrelated data [113]. 

Develop and Maintain Awareness: The human visual system 
allows people to make sense of complex visual information at a 
glance [43]. Robotic interfaces can use these capabilities to help 
users develop and maintain situational awareness (SA) through 
global views of mission data, including data about the state of the 
environment [99], the state of the robot [19], and robot capabilities 
[57]. While tables (Fig. 1e) require actively reading and comparing 

information, visualizations can rapidly summarize key relationships 
even without active attention [11, 144]. However, interfaces can 
inhibit this awareness by providing too much detail (introducing 
clutter), by decontextualizing information (e.g., zooming into the 
current operational state while providing no context for how the 
current data fts into the broader environment [72]), or by using 
inefective cues (e.g., relying on text at the periphery of the display). 
Visualization ofers a suite of techniques for providing overviews 
that summarize key information in large and complex datasets 
and that contextualize relevant information in data about the over-
all mission [96, 127]. Overviews do not often show all available 
information at once: efective summaries distill information into 
concise representations that help users develop a sense of the state 
of an operation and detect locations of interest to examine in detail 
on-demand. For example, our redesign (Fig. 1f left panel) allows 
operators to maintain awareness of the state of the AUV formation 
by visually summarizing critical aspects of motion profles and 
resources (e.g., battery, disk, synchronization), revealing specifc 
details about target robots (i.e., robot F_54, purple) on-demand. 

Relevant visualization techniques include overview+detail, where 
one visualization provides a concise global overview and another 
shows details about the active environment, and focus+context, 
where details are shown in the context of an overview [25]. For 
example, C2I [8] (Fig. 1d) efciently manages complexity using 
overview+detail visualizations coupled with detail-on-demand in-
teractions, adding mission details during planning through pop-ups. 
Minimaps frequently provide overview+detail in robotic interfaces 
(Fig. 1d); however, such maps are often as large or larger than the 
detail view, making it difcult for users to know where to attend. 
HRI interfaces seldom provide global overviews of nonspatial data, 
such as sensor readings. A few interfaces surrounded a camera feed 
with directional data to provide focus+context representations (e.g., 
[108]); however, extending these principles to other datatypes (e.g., 
periphery plots [93]) may further enhance SA using abstract data. 

Monitor Data Quality: Robots frequently collect data in locations 
that may be unsafe or unreachable for humans, such as damaged 
buildings [95], radioactive sites [76], and space [18, 44, 81, 90, 97]. 
Such locations often correlate with environments where errors in 
data collection are common. For example, a sensor may become 
miscalibrated [19], images degraded [22], or wireless reception lost 
[103]. Data visualizations can help users rapidly identify data qual-
ity errors by making data visible as it is collected [148]. For example, 
heatmaps can show where data has or has not been collected to as-
sess coverage (e.g., Fig. 1f, grey regions on the right show completed 
coverage). Comparing data across juxtaposed line graphs can reveal 
calibration issues between sensors. While analyzing data quality is 
an open challenge in VIS [87], prior results ofer a wealth of tech-
niques for representing uncertain [74, 107, 125] or even missing 
data [138] that may guide robot interfaces in better informing user 
actions and decisions. We can also design complementary views 
that allow users to accommodate variations in quality across data 
sources (e.g., supplementing low-quality video with sensor read-
ings or robot confdence in obstacle detection [22] or peripherally 
monitoring data updates as in the bar chart of sync times in Fig. 1f). 

Identify Anomalies: Anomalies in robot operation (e.g., high fre-
quency control signals that can cause mechanical failure [71]) or 



collected data (e.g., spikes in temperature readings) are often events 
of interest for users. Sometimes these anomalies can be automati-
cally detected using predetermined thresholds; however, failures 
are often difcult or impossible to detect autonomously [103]. Vi-
sualization tools can be designed to enable people to rapidly de-
tect outliers [30] or relevant diferences in patterns [31]. Further, 
by comparing across visualizations (e.g., whether diferent sen-
sors show correlated changes) or to common frames of reference 
(e.g., threshold bounds drawn on line graphs or expected bounds 
on movement [71]), users may more rapidly identify and charac-
terize anomalies and use these observations to drive appropriate 
action. Interfaces can accommodate anomaly detection using de-
signs that preserve data provenance (historical patterns) through 
techniques like data sedimentation [64], that support comparison 
against known thresholds (e.g., reference lines showing acceptable 
upper and lower bounds) or that emphasize relevant patterns (e.g., 
encoding all data samples as lines when noise matters or using 
smoothed lines or color when mean performance matters [4]). 

Make Predictions: Robotic interfaces often support users in mak-
ing predictions, such as determining whether a robot can safely 
traverse a doorway [70] or estimating the current mission state 
when signal is lost or delayed [9, 79]. Prediction tasks are most 
obvious in control and supervisory Activities where they directly 
guide operator decisions; however, prediction can also guide more 
collaborative Activities, such as estimating a wildland fre’s spread 
from data collected by the robot to adjust operational plans [33]. 
While HRI has designed predictive interfaces (e.g., [120, 146, 147]), 
integrating data into predictive reasoning must involve efective 
visualization of data both over time and with uncertainty. Inno-
vations in uncertainty visualization for temporal geospatial data, 
such as hurricanes [86], may inform predictive interface design. 
For example, representing potential motion trajectories using a 
bounding contour causes people to overestimate the likelihood of 
trajectories at the contour’s edges, whereas showing all possible 
trajectories shifts predictions towards the modal trajectory [106]. 

Assess Risks: Robots are often deployed in mission-critical do-
mains and pose risks to the success of the operation and/or damage 
to the environment, robot itself, or collocated people [94]. Data 
collected by robots may also help evaluate other risks relevant to 
the Objective (e.g., building inspection data might inform users 
about structural integrity [95]). To assess risk, users combine data 
about current robot and environment state with human knowledge 
about potential consequences of actions to estimate an internal 
cost function for diferent outcomes. For example, Fig. 1f shows 
available disk (% circle fll) in the context of the remaining planned 
path (dotted lines) to help operators anticipate if the system has 
sufcient resources to complete data collection. 

The ways that interfaces present data infuence user perceptions 
of risk [106]. For example, people often value salient data more 
highly than less visible data when assessing risk. Robot interfaces 
should consider how to efectively direct user attention towards the 
most relevant factors for estimating risk. Roldan et al. [120] draw 
attention to predicted risk factors in data using a “spotlight” and 
indicate robots at risk using smoke. While increasing salience may 
improve risk assessment, smoke and other overlays may occlude 
important details and make target objects less salient [89]. 

Figure 3: We identify seven common Data Tasks employed 
in HRI. These tasks help connect VIS principles for efective 
interface design to a variety of Human and Robot Activities. 

5 HRI ACTIVITIES 
We can use these tasks to help characterize major domain appli-
cations (i.e., the Objectives and Human/Robot Activities in our 
framework) within HRI. We briefy discuss four such Activities in 
the context of our framework and common related Data Tasks: 

Environment Navigation and Exploration: Almost all robot de-
ployments involve elements of environment navigation (directing 
a robot to some known goal) and exploration (investigating an area 
to fnd a goal or to survey a region). In navigation Activities, a 
primary Data Task is to fnd relevant information, where interfaces 
should help users by indicating known targets or factors impacting 
the robot’s abilities to successfully reach a target. Users must syn-
thesize data across sources to understand the relation between the 
robot’s planned and current trajectory (Fig. 1b) and to successfully 
navigate the environment (e.g., combining RGB camera and point 
cloud data to assess the 3D geometry of the environment; Fig. 1d). 
Interfaces should allow users to develop and maintain awareness 
of the operational environment to respond to potential changes in 
the environment, make predictions about the robot’s current path 
and state (e.g., does the robot have sufcient power to reach the 
target?), and assess risks in control decisions (e.g., is cutting through 
the canyon worth the risk of the UAV crashing?). Wayfnding [62] 
may be of particular relevance to such navigation activities. 

Exploration builds on these tasks to help the human-robot team 
successfully reconnoitre an environment. However, analysts must 
also monitor data quality to understand how much of the target 
environment has been successfully explored and identify anom-
alies to detect areas for further investigation (e.g., gaining more 
information about unexpected temperature readings). 

Manipulation: One of the key advantages robots ofer as physi-
cally situated agents is the ability to manipulate the physical envi-
ronment. While some aspects of manipulation may be automated, 



manipulation Activities that involve human guidance or direc- 6 DISCUSSION AND OPPORTUNITIES 
tion may particularly rely on the Data Task of fnding relevant 
information to direct the user’s attention towards key objects or 
mechanisms while minimizing distracting information that may 
complicate assessment or distract the user. For example, colorful 
depth visualizations applied to background objects provided in 
many interfaces (e.g., Fig. 1c) may distract or impede assessments 
of a foreground object [103]. During manipulations, users must 
synthesize data across sources to understand the current state of the 
robot and manipulated object, identify anomalies that may indicate 
failure patterns (e.g., high-frequency signals [71]), make predictions 
as to what commands are most likely to result in successful execu-
tion, and assess risks of potential failure modes (e.g., what are the 
risks of applying too much or too little force to an object [103]). 

Inspection and Search: Robots can assist humans by investigat-
ing and collecting data on environments as well as objects, struc-
tures, and people within environments (e.g., inspecting buildings 
after earthquakes [95], conducting geological [65] or archaeolog-
ical [27] surveys, or assisting with search-and-rescue emergency 
response [34]). Such activities may involve aspects of environment 
navigation, exploration, and manipulation, as described above, but 
represent a fundamentally diferent type of Activity due to the 
focus on collecting contextual data (rather than primarily spatial 
data, as in environment exploration), usually about specifc targets 
of interest (e.g., buildings, ruins, geologic points of interest, sur-
vivors, etc.). In such activities, users must be able to fnd relevant 
data about the focus of their inspection (e.g., structural elements of 
a building) and synthesize data across both contextual (e.g., temper-
ature or force sensors) and spatial sources to, for example, decide 
whether a wall is compromised. Users must develop and maintain 
awareness of the state of the entire space being assessed and monitor 
data quality to ensure that contextual data provides an accurate 
and complete assessment of the focus of the inspection (e.g., the 
feldsite or structure). To conserve time or resources, users may 
often wish to make predictions about the likelihood of success to 
adjust plans to ensure adequate and thorough coverage. Assessing 
risks associated with operational decisions (e.g., what is the risk 
that rescuers will miss a survivor by not investigating further [19]; 
Fig. 1a) should be emphasized in emergency response interfaces. 

Debugging and Recovery from Error: Across many domains, 
users may need to engage in Activities involving recognizing that 
something went wrong (either with the overall operation, the ro-
bot, or both), determining what specifcally went wrong, assess-
ing the severity of an error, and reasoning over potential solu-
tions. Prior HRI interfaces for examining programmatic state fows 
[46, 112, 128] and for robot debugging [26, 82] may be particularly 
relevant and directly informed by VIS research on network visual-
ization [58] and visual debugging techniques [59]. In this context, 
key Data Tasks include fnding relevant information related to an 
error, synthesize information across sources and identify relevant 
anomalies to determine what caused to the error, develop and main-
tain awareness of the system state to characterize the error and its 
magnitude, and make predictions about how potential resolutions 
may infuence the system and the likelihood of recurrence. 

We argue for closer collaboration between HRI and VIS, focusing on 
how knowledge from VIS may inform data-centric robot interface 
design. This interdisciplinary crossover can happen at both a low-
level (e.g., helping designers reason about color choices) and a 
higher level (e.g., helping developers understand sensemaking and 
decision making). One recent example of the value in such cross-
pollination is the MOSAIC Viewer [7], a visualization interface for 
multirobot systems developed using a design study approach [132]. 
This interface demonstrates how managing level of detail across 
data dimensions and views can emphasize key aspects of robot state 
and belief. MRS operators perceived that the interface increased 
speed, trust, and understanding in detecting anomalous behaviors. 

While our analysis and framework here focus on how visualiza-
tion can beneft HRI, we note that HRI also ofers novel opportuni-
ties for visualization researchers. For example, most visualizations 
are designed for static data (i.e., data that is already available to 
users). While some tools have explored streaming data [64, 84] 
and progressive computations [141, 158], visualization currently 
has limited insights into designing for dynamic data at the volume 
and variety collected by robots or for considering how data im-
portance may vary as the operational context, data type, and data 
age change. Many robotics applications require combining several 
forms of information-rich, yet visually complex, image and spatial 
data, such as LiDAR, IR images, and camera feeds. While image-
based visualizations exist [51, 83, 121, 152, 155], understanding 
how to fuse complex image data with other forms of information 
and how to best analyze multiple visual streams simultaneously to 
support real-time decision making remain open challenges. 

There are also many potential directions for mutually advancing 
HRI and VIS beyond those detailed here. For example, both VIS 
[20] and HRI [55, 145] researchers are exploring how to efectively 
communicate the reasoning processes used in AI algorithms. Sim-
ilarly, dynamic data physicalization using robot swarms is being 
simultaneously investigated by both VIS [85] and HRI [52, 105]. 

Our work promotes the need for greater collaboration between 
HRI and visualization. Such cross-disciplinary collaboration will 
lead to mutually benefcial innovations that help create data-centric 
HRI interfaces for more efectively reasoning about and acting on 
the vast quantities of information produced by robots. Our data-
centric framework aims to scafold the design of such interfaces 
by highlighting the importance of Data Tasks, establishing con-
nections across robotics and visualization, and identifying VIS best 
practices relevant to efective robot interface design. However, our 
framework is currently limited in its ability to provide specifc guid-
ance regarding objective trade-ofs in potential designs. We hope 
that future research will enable our framework to evolve in its abil-
ity to provide actionable strategies for achieving required outcomes 
in interface design, yet caution that VIS, like HRI, is a complex 
design problem: purely prescriptive guidance will not always be 
possible or desired. Rather, we hope this paper serves as a call to 
action for both communities to recognize potential synergies and 
explore co-innovation at the rich intersection of HRI and VIS. 
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